CHAPTER 16

FRACTAL RELATED METHODS FOR
PREDICTING PROTEIN STRUCTURE
CLASSES AND FUNCTIONS

ZU-GUO YU, VO ANH, JIAN-YI YANG, and SHAO-MING ZHU

16.1 INTRODUCTION

The molecular function of a protein can be inferred from the protein’s structure
information [1]. It is well known that an amino acid sequence partially determines
the eventual three-dimensional structure of a protein, and the similarity at the
protein sequence level implies similarity of function [2,3]. The prediction of
protein structure and function from amino acid sequences is one of the most
important and challenge problems in molecular biology.

Protein secondary structure, which is a summary of the general conformation
and hydrogen bonding pattern of the amino acid backbone [4,5], provides some
knowledge to further simplify the complicated 3D structure prediction problem.
Hence an intermediate but useful step is to predict the protein secondary struc-
ture. Since the 1970s, many methods have been developed for predicting protein
secondary structure (see the more recent references cited in Ref. [6]).

Four main classes of protein structures, based on the types and arrangement
of their secondary structural elements, were recognized [7]: (1) the « helices,
(2) the g strands, and (3) those with a mixture of « and 8 shapes denoted as
a + B and «/B. This structural classification has been accepted and widely used
in protein structure and function prediction. As a consequence, it has become
an important problem and can help build protein database and predict protein
function. In fact, Hou et al. [1] (see also a short report published in Science
[8]) constructed a map of the protein structure space using the pairwise structural
similarity of 1898 protein chains. They found that the space has a defining feature
showing these four classes clustered together as four elongated arms emerging
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from a common center. A review by Chou [9] described the development of
some existing methods for prediction of protein structural classes. Proteins in the
same family usually have similar functions. Therefore family identification is an
important problem in the study of proteins.

Because similarity in the protein sequence normally implies similarity of func-
tion and structure, the similarities of protein sequences can therefore be used to
detect the biological function and interaction of proteins [10]. It is necessary to
enrich the concept and context of similarity, because some proteins with low
sequence identity may have similar tertiary structure and function [11].

Fractal geometry provides a mathematical formalism for describing complex
spatial and dynamical structures [12,13]. Fractal methods are known to be useful
for detection of similarity. Traditional multifractal analysis is a useful way to
characterize the spatial heterogeneity of both theoretical and experimental fractal
patterns [14]. More recently it has been applied successfully in many different
fields, including time series analysis and financial modeling [15]. Some applica-
tions of fractal methods to DNA sequences are provided in References [16—-18]
and references cited therein.

Wavelet analysis, recurrence quantification analysis (RQA), and empirical
mode decomposition (EMD) are related to fractal methods in nonlinear sciences.
Wavelet analysis is a useful tool in many applications such as noise reduction,
image processing, information compression, synthesis of signals, and the study
of biological data. Wavelets are mathematical functions that decompose data into
different frequency components and then describe each component with a resolu-
tion matched to its scale [19,20]. The recurrence plot (RP) is a purely graphical
tool originally proposed by Eckmann et al. [21] to detect patterns of recurrence in
the data. RQA is a relatively new nonlinear technique introduced by Zbilut and
Webber [22,23] that can quantify the information supplied by RP. The traditional
EMD for data, which is a highly adaptive scheme serving as a complement to
Fourier and wavelet transforms, was originally proposed by Huang et al. [24]. In
EMD, a complicated dataset is decomposed into a finite, often small, number of
components called intrinsic mode functions (IMFs). Lin et al. [25] presented a
new approach to EMD. This method has been used successfully in many applica-
tions in analyzing a diverse range of datasets in biological and medical sciences,
geophysics, astronomy, engineering, and other fields [26,27].

Fractal methods have been used to study proteins. Their applications include
fractal analysis of the proton exchange kinetics [28], chaos game representation of
protein structures [29], sequences based on the detailed HP model [30,31], fractal
dimension of protein mass [32], fractal properties of protein chains [33], frac-
tal dimensions of protein secondary structures [34], multifractal analysis of the
solvent accessibility of proteins [35], and the measure representation of protein
sequences [36]. The wavelet approach has been used for prediction of secondary
structures of proteins [37—-45]. Chen et al. [41] predicted the secondary struc-
ture of a protein by the continuous wavelet transform (CWT) and Chou—Fasman
method. Marsolo et al. [42] combined the pairwise distance with wavelet decom-
position to generate a set of coefficients and capture some features of proteins.
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Qiu et al. [43] used the continuous wavelet transform to extract the position of
the « helices and short peptides with special scales. Rezaei et al. [44] applied
wavelet analysis to membrane proteins. Pando et al. [45] used the discrete wavelet
transform to detect protein secondary structures. Webber et al. [46] defined two
independent variables to elucidate protein secondary structures based on the RQA
of coordinates of «-carbon atoms. The variables can describe the percentage of «
carbons that are composed of an « helix and a 8 sheet, respectively. The ability
of RQA to deal with protein sequences was reviewed by Giuliani et al. [47]. The
IMFs obtained by the EMD method were used to discover similarities of protein
sequences, and the results showed that IMFs may reflect the functional identities
of proteins [48,49].

More recently, the authors used the fractal methods and related wavelet anal-
ysis, RQA and EMD methods to study the prediction of protein structure classes
and functions [50-54]. In this chapter, we review the methods and results in
these studies.

16.2 METHODS

16.2.1 Measure Representation Based on the Detailed
HP Model and Six-Letter Model

The detailed HP model was proposed by Yu et al. [30]. In this model, 20 different
kinds of amino acids are divided into four classes: nonpolar, negative polar,
uncharged polar, and positive polar. The nonpolar class consists of the eight
residues ALA, ILE, LEU, MET, PHE, PRO, TRP, and VAL; the negative polar
class consists of the two residues ASP and GLU; the uncharged polar class is
made up of the seven residues ASN, CYS, GLN, GLY, SER, THR, and TYR;
and the remaining three residues ARG, HIS, and LY'S designate the positive polar
class.

For a given protein sequence s =s; ---§ with length L, where s is one of

the 20 kinds of amino acids fori = 1,--- ,L, we define
0, if 5 is nonpolar
1, if 5 is negative polar
L= 16.1
& 2, if s is uncharged polar (16.1)
3, if s is positive polar

This results in a sequence X(s) =&, ---a,, where & is a letter of the alphabet
{0,1,2,3}. The mapping (16.1) is called the detailed HP model [30].

According to Chou and Fasman [55], the 20 different kinds of amino acids are
divided into six classes: strong g, former (Hg); B former (hg); weak g, former
(Ip); B indifferent (iz); B breaker (bs); and strong g breaker (Bg). The Hy class
consists of the three residues Met, Val, and 1IE; the hy class consists of the seven
residues Cys, Tyr, Phe, GIn, Leu, Thr, and Trp; the |4 class consists of the residue



320 FRACTAL RELATED METHODS FOR PREDICTING PROTEIN STRUCTURE CLASSES

Ala; the iz class consists of the three residues Arg, Gly, and Asp; the by class
is made up of the five residues Lys, Ser, His, Asn, and Pro; and the remaining
residue Glu constitutes the B, class.

For a given protein sequence s =s; - - -5 with length L, where 5 is one of
the 20 kinds of amino acids fori =1---L, we define

if § is in the By class
if 5 is in the by class
if 5 isin the iz class
if 5 is in the 14 class
if 5 is in the hy class
, if § is in the Hy class

(16.2)

Os WN RO

This results in a sequence X(s) = a; ---&_, Where & is a letter of the alphabet
{0,1,2,3,4,5}. The mapping (16.2) is called the six-letter model [51].

Here we call any string made up of K letters from the set {0, 1, 2, 3} (for the
detailed HP model) or {0, 1,2, 3,4,5} (for the six-letter model) a K-string. For
a given K, there are in total 4< or 6¥ different K strings. In order to count the
number of K strings in a sequence X (s) from a protein sequence s, we need 4% or
6 counters. We divide the interval [0, 1] into 4% or 6¥ disjoint subintervals, and
use each subinterval to represent a counter. Forr =rq---r¢,r; €{0,1,2,3},i =
1,---,K, which is a substring with length K, we define

ul (16.3)

r 1
Xert (1) = Z 4—'. Xiight (1) = K + 2

K K

i=1 i=1
Forr=ry---rg, 1, €{0,1,2,3,4,5}, i =1,---,K, which is a substring with
length K, we define

U (16.4)

1
— + 5

K K
r.
Xet(N) = ) =+ Xight (1) = —¢

— 6 6 .

i=1 i=1
We then use the subinterval [Xie (), Xignt () to represent substring r. Let Ny (r)
be the number of times that a substring r with length K appears in the sequence
X(s) (when we count these numbers, we open a reading frame with width K and

slide the frame one amino acid each time). We define

Ny (r)

P = T

(16.5)

to be the frequency of substring r. It follows that Z{r}FK(r) = 1. We can now
define a measure pg on [0,1) by dug (X) =Y (x)dx, where

Y (¥) = 45F (), (16.6)
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when X € [Xer (1), Xignt(r)) defined by (16.3). We define a measure vy on [0, 1)
by dvyg (x) = Yg (x)dx, where

Yy (X) = 6XFy (1), (16.7)

when X € [Xet (1), Xignt (1)) defined by (16.4). We see that foldu,K(x) =1 and

folde (x) = 1. We call ux and v the measure representation of the protein
sequence corresponding to the given K based on the detailed HP model and the
six-letter model, respectively.

16.2.2 Measures and Time Series Based on the
Physicochemical Features of Amino Acids

Measured in kcal/mol, the hydrophobic free energies of the 20 amino acids are
A=0.87, R=0.85 N=0.09, D=066 C=152 Q=00 E=067 G=
00,H =087, 1 =315 L=217, K =165 M =167, F =287, P =2.77,
S=0.07,T=007,W=377,Y =276, and V = 1.87 [39].

The solvent accessibility (SA) values for solvent exposed area >30A are
S=070,T=071,A=048 G=051,P =078 C =032, D =081 E =
093,Q=081,N=0.82L=0411=0.39,V =040,M =0.44, F = 0.42,
Y =0.67, W =0.49, K =0.93, R=10.84, and H = 0.66 [56].

The Schneider—Wrede scale (SWH) values of the 20 kinds of amino acids
are A=16, R=-123, N=-48,D=-92,C=2, Q=-11 E =-8.2,
G=1H=-31=31L=28 K=-88 M=24,F=37 P=-02,
S=06,T=12,W=19,Y =-0.7,and V = 2.6 [47]. Yang et al. [51] added
a constant 12.30 to these values to make all the 20 values nonnegative, yielding
the revised Schneider —\Wrede scale hydrophaobicity (RSWH).

Rose et al. [57] proposed different measures of hydrophobicity of proteins.
They gave four kinds of values for surface area and hydrophobicity of each amino
acid. We use A°, the stochastic standard state accessibility, that is, the solvent
accessible surface area (SASA) of a residue in standard state. The SASA of the
20 kinds of amino acids are A = 118.1, R = 256.0, N = 165.5, D = 158.7, C =
146.1,Q = 193.2,E = 186.2,G = 88.1,H =202.5,1 =181.0,L =193.1,K =
2258, M =203.4, F =222.8, P =146.8, S =129.8, T = 152.5, W = 266.3,
Y =236.8, and V = 164.5.

Each amino acid can also be represented by the value of the volume of
sidechains of amino acids [58]. These values are A= 27.5, C = 44.6, D = 40,
E=62,F=1155,G=0,H =79, 1 =935 K =100, L =935 M =941,
N =58.7,P =419, Q =807, R=105S=293,T =513,V =715 W =
1455, and Y = 117.3.

We convert each amino acid according to hydrophobic free energy, SA,
RSWH, SASA, and volume of sidechains along the protein sequence to calculate
five different numerical sequences, and view them as time series.

Let T;,, t=1,2,...,N, be the time series with length N. First, we define
Fi = Tt/(Zszl T), (=12 ...,N) as the frequency of T;. It follows that
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Z?‘zl F; = 1. Now we can define a measure v; on the interval [0, 1) by dv, (dx) =
Y, (x)dx, where

T, t—1 t
Yl(X) =N x Ft = #, X e [T, N) (168)
ﬁZj:lTj

We denote the interval [(t — 1)/N, t/N) by I,. It is seen that v,([0,1)) = 1 and
v (1) = F. We call v, (x) the measure for the time series.

16.2.3 Z-Curve Representation of Proteins

The concept of Z-curve representation of a DNA sequence was first proposed by
Zhang and Zhang [59]. We propose a similar concept for proteins [50]. Once we
get the sequence X(s) = a, - - - a_for a protein, where g; is a letter of the alphabet
{0,1,2,3} as in Section 16.2.1, we can define the Z-curve representation of this
protein as follows. This Z curve consists of a series of nodes Q,,i =0,1, ... ,L,
whose coordinates are denoted by x;, y; and z. These coordinates are defined as

¥ = 2(num? + num?) — i
yi = 2(num? 4+ num?) — i, i=01,2,...,L (16.9)
z = 2(num?® + num?) — i

where num?, num?, num?, num? denote the number of occurrences of the sym-
bols 0,1,2,3 in the prefix a,a, - - - g, respectively, and numJ = num} = num3 =
numg = 0. The connection of nodes Q, Qy, ... ,Q, to one another by straight
lines is defined as the Z-curve representation of this protein. We then define

AXi =X —X_1
Ay, =y, —y_4, 1=12...,L (16.10)
A =7 -7,

where Ax;, Ay;, and Az can only have values 1 and —1.

16.2.4 Chaos Game Representation of Proteins and
Related Time Series

Chaos game representation (CGR) of protein structures was first proposed by
Fiser et al. [29]. We denote this CGR by 20-CGR as 20 kinds of letters are used
to represent protein sequences. Later Basu et al. [60] and Yu et al. [31] proposed
other kinds of CGRs for proteins, in which 12 and 4 kinds of letters were used
for protein sequences, respectively. We denote them by 12-CGR and 4-CGR.
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16.2.4.1 Reverse Encoding for Amino Acids It is known that there are
several kinds of coded methods for some amino acids. As a result, there should
be many possible nucleotide sequences for one given protein sequence. We have
used [52], the encoding method proposed by Deschavanne and Tufféry [61],
which is listed in Table 1 of our study [52]. Deschavanne and Tufféry [61]
explained that the rationale for the choice of this fixed code is to keep a balance
in base composition so as to maximize the difference between the amino acid
codes.

After one protein sequence is transformed into nucleotide sequences, we can
use the CGR of nucleotide sequences [62] to analyze it; the CGR obtained is
abbreviated AAD-CGR (amino acids to DNA CGR). The CGR for a nucleotide
sequence is defined on the square [0, 1] x [0, 1], where the four vertices corre-
spond to the four letters A, C, G, and T: the first point of the plot is placed half
way between the center of the square and the vertex corresponding to the first
letter of the nucleotide sequence; the ith point of the plot is then placed half way
between the (i — 1)th point and the vertex corresponding to the ith letter. The
plot is then called the CGR of the nucleotide sequence, or the AAD-CGR of the
protein sequence.

We can decompose the AAD-CGR plot into two time series [52]. Any point
in the AAD-CGR plot is determined by two coordinates: x and y coordinates.
Because the AAD-CGR plot can be uniquely reconstructed from these two time
series, all the information stored in the AAD-CGR plot is contained in the
time series, and the information in the AAD-CGR plot comes from the primary
sequence of proteins. Therefore, any analysis of the two time series is equiva-
lent to an indirect analysis of the protein primary sequence. It is possible that
such analysis provides better results than direct analysis of the protein primary
sequences.

16.2.5 Time Series Based on 6-Letter Model, 12-Letter Model, and
20-Letter Model

According to the 6-letter model, the protein sequence can be represented by a
numerical sequence {a; }iL=1J here & € {0,1,2,3,4,5} foreachi =1,2, ... ,L.

We now analogously define a 12-letter model and a 20-letter model. With
the idea of chaos game representation based on a 12-sided regular polygon [60],
we define the 12-letter model as A=0,G=0,P=1,S=2,T=2,H =3,
Q=4,N=5D=6E=6,R=7,K=71=8L=8 V=8 M=3§,
W =9, F =10, Y =10, and C = 11 according to the order of vertices on the
12-sided regular polygon to represent these amino acids.

The 20-letter model can be similarly definedas A=0,R=1,N =2,D =3,
C=4,Q=5E=6,G=7H=81=9,L=10,K=11,M =12, F =
13, P=14,S=15 T =16, W =17, Y =18, and V = 19 according to the
dictionary order of the 3-letter representation of each amino acid listed in Brown’s
treatise [63].
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These three models can be used to convert a protein sequence into three
different numerical sequences (and also can be viewed as time series).

16.2.6 Iterated Function Systems Model

In order to simulate the measure representation of a protein sequence, we pro-
posed use of the iterated function systems (IFS) model [30]. IFS is the acronym
assigned by Barnsley and Demko [64] originally to a system of contractive maps

w = {wy,wy, ..., wy}. Let E; be a compact set in a compact metric space,
Ealaz--»an = walowazo U Owan (EO) and
En = U E010'2---O'n

o1,...,on€{1,2,....N}

Then E = N32, E, is called the attractor of the IFS. The attractor is usually a
fractal set and the IFS is a relatively general model to generate many well-known
fractal sets such as the Cantor set and the Koch curve. Given a set of probabilities
P, >0, ZiN=1 P; = 1, we pick an x; € E and define the iteration sequence

Xn+1=w0n(xn)’ n:O, 112,3,

where the indices o, are chosen randomly and independently from the set
{1,2, ... ,N} with probabilities P(c,, =1i) = P,. Then every orbit {x,} is
dense in the attractor E [64]. For n sufficiently large, we can view the orbit
{Xo: %1, - .., Xy} as an approximation of E. This process is called chaos game.

Let xg the characteristic function for the Borel subset B C E, then, from the
ergodic theorem for IFS [64], the limit

. 1
M<B>:ngrgo[n+1§xB<xk>}

exists. The measure . is the invariant measure of the attractor of the IFS. In other
words, w(B) is the relative visitation frequency of B during the chaos game.
A histogram approximation of the invariant measure may then be obtained by
counting the number of visits made to each pixel.

The coefficients in the contractive maps and the probabilities in the IFS model
are the parameters to be estimated for a real measure that we want to simulate.
A moment method [30,65] can be used to perform this task.

From the measure representation of a protein sequence based on the detailed
HP model, it is logical to choose N = 4 and

wy(X) =

+

, wy(X) =

+

+
AW N

w3(X) = , o wg(X) =

A X M X
N =
A X M X
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in the IFS model. For a given measure representation of a protein sequence
based on the detailed HP model, we obtain the estimated values of the probabil-
ities Py, P,, P3, P, by solving an optimization problem [65]. Using the estimated
values of the probabilities, we can use the chaos game to generate a histogram
approximation of the invariant measure of the IFS that can be compared with the
real measure representation of the protein sequence.

16.2.7 Detrended Fluctuation Analysis

The exponent in a detrended fluctuation analysis can be used to characterize the
correlation of a time series [17,18]. We view Ax;, Ay;, and Az,i =1,2, ... ,L,
in the Z-curve representation of proteins as time series. We denote this time series
by F(t),t =1, ..., L. First, the time series is integrated as T (k) = Z{‘zl[F t) —
F.], where F,, is the average over the whole time period. Next, the integrated
time series is divided into boxes of equal length n. In each box of length n, a
linear regression is fitted to the data by least squares, representing the trend in
that box. We denote the T coordinate of the straight-line segments by T, (k). We
then detrend the integrated time series T (K) by subtracting the local trend T, (k)
in each box. The root-mean-square fluctuation of this integrated and detrended
time series is computed as

N

1
T = |5 2 TR =T (16.11)

k=1

Typically, #(n) increases with box size n. A linear relationship on a log—log
plot indicates the presence of scaling #(n) o« n*. Under such conditions, the
fluctuations can be characterized by the scaling exponent A, the slope of the line
in the regression In #(n) against In n. For uncorrelated data, the integrated time
series T (k) corresponds to a random walk, and therefore, » = 0.5. A value of
0.5 < 1 < 1.0 indicates the presence of long memory so that, for example, a large
value is likely to be followed by large values. In contrast, the range 0 < 2 < 0.5
indicates a different type of power-law correlation such that positive and negative
values of the time series are more likely to alternate. We consider the exponents
A for the Ax;, Ay, and Az, i =1,2,...,L, of the Z-curve representation of
protein sequences as candidates constructing parameter spaces for proteins in this
chapter. These exponents are denoted by 1, Ay, and A, respectively.

16.2.8 Ordinary Multifractal Analysis

The most common algorithms of multifractal analysis are the so-called fixed-size
box counting algorithms [16]. In the one-dimensional case, for a given measure
wn with support E C R, we consider the partition sum

Z@= ) [p®)] (16.12)

n(B)#0
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with g € R, where the sum runs over all different nonempty boxes B of a given
side € in a grid covering of the support E, that is, B = [ke, (K + 1)¢). The
exponent 7(q) is defined by

r(@ = Jim " 29 (16.13)
and the generalized fractal dimensions of the measure are defined as
Dy = J(_q)l for q # 1 (16.14)
D, = lim =< ¢ forq=1 (16.15)
e~01n e

where Z; = ZM(B#O/L(B) In w(B). The generalized fractal dimensions are
numerically estimated through a linear regression of (In Z_.(q))/(q — 1) against
In e for g # 1, and similarly through a linear regression of Z; . against In e for
g = 1. The value D; is called the information dimension and D,, the correlation
dimension.

The concept of phase transition in multifractal spectra was introduced in stud-
ies of logistic maps, Julia sets, and other simple systems. By following the
thermodynamic formulation of multifractal measures, Canessa [66] derived an
expression for the analogous specific heat as

82
Cy=-— a’q(zq) ~2t(q) —7(q+1) — 7(q — 1) (16.16)

He showed that the form of C, resembles a classical phase transition at a critical
point for financial time series.

The singularities of a measure are characterized by the Lipschitz—Holder expo-
nent «, which is related to (q) by

d
a(g) = @T(q) (16.17)

Substitution of Equation (16.13) into Equation (16.17) yields

2 u@)zoli(B)]4In 1 (B)

Z()Ine (1619

a(q) = €II 1

Again the exponent «(q) can be estimated through a linear regression of

Z [u®)]9In 1(B)

n(B)#0 Z @

against In € [35]. The multifractal spectrum f («) versus « can be calculated
according to the relationship f (@) = qa(q) — 7(q).
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16.2.9 Analogous Multifractal Analysis

The analogous multifractal analysis (AMFA) is similar to multiaffinity analysis,
and can be briefly sketched as follows [51]. We denote a time series as X (t), t =

1,2, ... ,N. First, the time series is integrated as
k
Ya(k) =Y (X(1) = X,), (@ > 0) (16.19)
t?l
Yak) =D IX(®) = Xgl, (@ #0) (16.20)
t=1

where X, is the average over the whole time period. Then two quantities Mg (L)
and Mg (L) are defined as

Mq(L) = [(Y'() —y'G + DY, @>0 (16.21)
Mq(L) = [(ly() —y( +DIIY%, (@ #0) (16.22)
where (); denotes the average over j, j =1,2,...,N —L; L typically varies

from 1 to N; for which the linear fit is good. From the In L-In Mg(L) and
In L-In Mg (L) planes, one can find the following relations:

Mg(L) oc LY@ for g >0 (16.23)

Mg(L) o L"® for q#0 (16.24)

Linear regressions of In Mg (L) and In Mc;(L) against In L will result in the
exponents h(q) and h’(q), respectively.

16.2.10 Wavelet Spectrum

As the wavelet transform of a function can be considered as an approximation of
the function, wavelet algorithms process data at different scales or components.
At each scale, many coefficients can be obtained and the wavelet spectrum is
calculated on the basis of these coefficients. Hence the wavelet spectrum provides
useful information for analyzing data. Given a function f (t), one defines its
wavelet transform as [19]

W, (a,b) = |a|~®/? / f(t)y (%) dt (16.25)
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where b is the position and a is the scale. The scale a in wavelet transform means
the ath resolution of the data. Takinga = j,j = 2°,21,22, ... ,andb =k, k € R,
we get the wavelet spectrum as

Spectrum [j] = Zcfk, k=202t 22 ...
K

where G = Wk (j, k).

For simplicity, the scale j can be selected as j = 1, %,2, ..., 20, which are
more adjacent and can be used to capture more details of the data. The wavelet
spectrum is calculated by summing the squares of the coefficients in each scale
j. The local wavelet spectrum is defined through the modulus maxima of the
coefficients [67] as local spectrum [j] = Zkéj%k, where

G = G ks if |Cj,k|_ > |Gkl and (G il > (G el

' 0, otherwise.

The maximum of the wavelet spectrum and the maximum of the local wavelet
spectrum were applied in the prediction of structural classes and families of
proteins [53].

In our work, we chose the Daubechies wavelet, which is commonly used
as a signal processing tool. These wavelet functions are compactly supported
wavelets with extremal phase and highest number of vanishing moments for
a given support width. They are orthogonal and biorthogonal functions. The
Daubechies wavelets can improve the frequency domain characteristics of other
wavelets [19].

16.2.11 Recurrence Quantification Analysis

The recurrence plot (RP) is a purely graphical tool originally proposed by
Eckmann et al. [21] to detect patterns of recurrence in the data. For a

time series {X;, %, ..., Xy} with length N, we can embed it into the space
R™ with embedding dimension m and a time delay . We write ¥ =
5 X400 X200 -+ Xipme1)e)s1 = 1,2, ..., Ny, where Ny =N —(m-—1r.

In this way we obtain N, vectors (points) in the embedding space R™. We gave
some numerical explanations for the selection of m and ¢ in our earlier paper
[52].

From the N,, points, we can calculate the distance matrix (DM), which is
a square N, x N,, matrix. The elements of DM are the distances between all
possible combinations of i points and j points. They are computed according to
the norming function selected. Generally, the Euclidean norm is used [47]. DM
can be rescaled by dividing each element in the DM by a certain value as this
allows systems operating on different scales to be statistically compared. For such
a value, the maximum distance of the entire matrix DM is the most commonly
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used (and recommended) rescaling option, which redefines the DM over the unit
interval (0.0—100.0%).

Once the rescaled DM = (D; ; )y, Ny, 1S Calculated, it can be transformed into
a recurrence matrix (RM) of distance elements within a threshold ¢ (hamely,
radius). RM = (R j (€)) N > Nim and R =H( - Diyj),i,j =12,...,Ny
where H is the Heaviside function

0 if x<0
Ho) =10 16.26
*) {1, if x>0 (16.26)

RP is simply a visualization of RM by plotting the points on the ij plane for
those elements in RM with values equal to 1. If R;; (¢) = 1, we say that j points
recur with reference to i points. For any e, since R j(e) =1,(i =1,2, ... ,Np),
the RP has always a black main diagonal line. Furthermore, the RP is symmetric
with respect to the main diagonal as R =R ), (i,j =1,2,... ,Ny). eis
a crucial parameter of RP. If ¢ is chosen too small, there may be almost no
recurrence points and we will not be able to learn about the recurrence structure
of the underlying system. On the other hand, if ¢ is chosen too large, almost
every point is a neighbor of every other point, which leads to a large number of
artifacts [68]. Selection of ¢ was discussed numerically in [52].

Recurrence quantification analysis (RQA) is a relatively new nonlinear tech-
nique proposed by Zbilut and Webber [22,23] that can quantify the information
supplied by RP. Eight recurrence variables are usually used to quantify RP [68].
It should be pointed out that the recurrence points in the following definitions
consist only of those in the upper triangle in RP (excluding the main diagonal
line). The first recurrence variable is %recurrence (%REC). %REC is a measure
of the density of recurrence points in the RP. This variable can range from 0%
(no recurrent points) to 100% (all points are recurrent). The second recurrence
variable is %determinism (%DET). %DET measures the proportion of recurrent
points forming diagonal line structures. For this variable, we have to first decide
at least how many adjacent recurrent points are needed to define a diagonal line
segment. Obviously, the minimum number required (and commonly used) is 2.
The third recurrence variable is linemax (L,a). Which is simply the length of the
longest diagonal line segment in RP. This is a very important recurrence vari-
able because it inversely scales with the largest positive Lyapunov exponent. The
fourth recurrence variable is entropy (ENT), which is the Shannon information
entropy of the distribution probability of the length of the diagonal lines. The
fifth recurrence variable is trend (TND), which quantifies the degree of system
stationarity. It is calculated as the slope of the least squares regression of %local
recurrence as a function of the displacement from the main diagonal. It should
be made clear that the so called %local recurrence is in fact the proportion of
recurrent points on certain line parallel to the main diagonal over the length
of this line. %recurrence is calculated on the whole upper triangle in RP while
%local recurrence is computed on only certain lines in RP, so it is termed as
local. Multiplying by 1000 increases the gain of the TND variable. The remaining
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three variables are defined on the basis of the vertical line structure. The sixth
recurrence variable is %laminarity ( %LAM). %LAM is analogous to %DET but
is calculated with recurrent points constituting vertical line structures. Similarly,
we also select 2 as the minimum number of adjacent recurrent points to form a
vertical line segment. The seventh variable, trapping time (TT), is the average
length of vertical line structures. The eighth recurrence variable is maximal length
of the vertical linesin RP (V,54), Which is similar to L.

16.2.12 Empirical Mode Decomposition and Similarity of Proteins

Empirical mode decomposition (EMD) was originally designed for non-linear and
nonstationary data analysis by Huang et al. [24]. The traditional EMD decom-
poses a time series into components called intrinsic mode functions (IMFs) to
define meaningful frequencies of a signal.

Lin et al. [25] proposed a new algorithm for EMD. Instead of using the
envelopes generated by spline, a lowpass filter is used to generate a moving
average to replace the mean of the envelopes. The essence of the shifting algo-
rithm remains. Let £ be a lowpass filter operator, for which £(X)(t) represents
a moving average of X. We now define 7(X) = X — L(X). In this approach, the
lowpass filter £ is dependent on the data X. For a given X(t), we choose a low-
pass filter £, accordingly and set 7; = | — £;, where | is the identity operator.
The first IMF in the new EMD is given by lim,_, .77 (X), and subsequently the
kth IMF 1, is obtained first by selecting a lowpass filter £, according to the data
X —Ily —---—l_; and iterations I, = lim,_ 72X —1; —--- —I,_;), where
Tx =1 — L. The process stops when Y =X —1; —--- — I has at most one
local maximum or local minimum. Lin et al. [25] suggested using the filter
Y = L(X) given by Y(n) = ij:_m g X(n+j). We selected the mask

m—Jj|+1.
= ——, ] =—-m,...,m
m+1

in our work [53].

Let r(t) = X(t) — I3(t) —--- — I, (t). The original signal can be expressed
as X(t) = ZiK:ll I; (t) + r (t), where the number K, can be chosen according to a
standard deviation. In our work, the number of components in IMFs was set as
4 due to the short length of some amino acid sequences [53].

The similarity value of two proteins at each component (IMF) is obtained as
the maximum absolute value of the correlation coefficient. In our work [53], a
new cross-correlation coefficient C*2(j) is defined by

Sho SIS, —j)
1/
[N st R s

c¥() = 5, ] =0,£L,£2,... (16.27)
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where N is the length of the intersection of two signals with lag j, N; is the
length of signal S, and N, is the length of signal S,. The maximum absolute
value C of all the correlation coefficients of the components is considered as the
similarity value for two proteins.

16.3 RESULTS AND CONCLUSIONS

In our earlier paper [50], we selected the amino acid sequences of 43 large pro-
teins from the RCSB Protein Data Bank (http://www.rcsb.org/pdb/index.
html). These 43 proteins belong to four structural classes according to their
secondary structures:

1. We converted the amino acid sequences of these proteins into their measure
representations based on the detailed HP model with K = 5. We found that
the IFS model corresponding to K =5 is a good model for simulating the
measure representation of protein sequences, and the estimated value of
the probability P; from the IFS model contains information useful for the
secondary structural classification of proteins [30]. We performed an IFS
simulation for the proteins selected and adopted the estimated parameter
P, as one parameter to construct the parameter space for proteins.

2. We converted the amino acid sequences of these proteins to their Z curve
representations and performed their detrended fluctuation analysis. The
exponents A, Ay, A, were estimated and used as candidate parameters to
construct the parameter space.

3. We computed the generalized fractal dimensions D, and the related spectra
Cqy» multifractal spectra f («) of hydrophobic free energy sequences and
solvent accessibility sequences of all 43 proteins.

4. For a structural classification of proteins, we considered the following
parameters: P; from the IFS estimations of the measure representations;
the exponents A, Ay, 1, from the detrended fluctuation analysis of the Z
curve representations; the range of D, (i.e. the value D_;5—D;5 in our
frame); the maximum value of C, (denoted MaxCy); the value q, of ¢
that corresponds to the maximum value of C,; the maximum value of «
(denoted o), the minimum value of « (denoted «yi,) and Aw (defined by
Umax — %min) from the multifracal analysis of the hydrophobic free-energy
sequences and solvent accessibility sequences of proteins as candidates for
constructing parameter spaces.

In a parameter space, one point represents a protein. We wanted to determine
whether the proteins can be separated from four structural classifications in these
parameter spaces. We found that we can propose a method which consists of
three components to cluster proteins [50]. We used Fisher’s linear discriminant
algorithm to give a quantitative assessment of our clustering on the selected



332 FRACTAL RELATED METHODS FOR PREDICTING PROTEIN STRUCTURE CLASSES

proteins. The discriminant accuracies are satisfactory. In particular, they reach
94.12% and 88.89% in separating g proteins from {«, @ + B, «/B} proteins in a
3D space.

We [51], considered a set of 49 large proteins that included the 43 proteins
studied earlier [50]. Given an amino acid sequence of one protein, we first con-
verted it into its measure representation 1 based on the six-letter model with
length K = 5. Then we calculated Dy, 7(®), Cy, @, and f (o) for the measures
uk of the 49 selected proteins. We then converted the amino acid sequences of
proteins into their RSWH sequences according to the revised Schneider—Wrede
hydrophobicity scale. We used such sequences to construct the measures v.
The ordinary multifractal analysis was then performed on these measures. The
AMFA was also performed on the RSWH sequences. Then nine parameters from
these analyses were selected as candidates for constructing parameter spaces.
We proposed another three steps to cluster protein structures [51]. Fisher’s lin-
ear discriminant algorithm was used to assess our clustering accuracy on the
49 selected large proteins. The discriminant accuracies are satisfactory. In par-
ticular, they reach 100.00% and 84.21% in separating the « proteins from the
{B,a + B,a/B} proteins in a parameter space; 92.86% and 86.96%, in separating
the B proteins from the {« + B, «/B} proteins in another parameter space; and
91.67% and 83.33%, in separating the /8 proteins from the « + B proteins in
the last parameter space.

We [52], intended to predict protein structural classes («, 8, « + 8, or a/B) for
low-similarity datasets. Two datasets were used widely: 1189 (containing 1092
proteins) and 25PDB (containing 1673 proteins) with sequence similarity values
of 40% and 25%, respectively. We proposed decomposing the chaos game rep-
resentation of proteins into two kinds of time series. Then we applied recurrence
quantification analysis to analyze these time series. For a given protein sequence,
a total of 16 characteristic parameters can be calculated with RQA, which are
treated as feature representations of the protein. On the basis of such feature rep-
resentation, the structural class for each protein was predicted with Fisher’s linear
discriminant algorithm. The overall accuracies with step-by-step procedure are
65.8% and 64.2% for 1189 and 25PDB datasets, respectively. With one-against-
others procedure used widely, we compared our method with five other existing
methods. In particular, the overall accuracies of our method are 6.3% and 4.1%
higher for the two datasets, respectively. Furthermore, only 16 parameters were
used in our method, which is less than that used by other methods.

Family identification is helpful in predicting protein functions. Since most
protein sequences are relatively short, we first randomly linked the protein
sequences from the same family or superfamily together to form 120 longer
protein sequences [53], and each structural class contains 30 linked protein
sequences. Then we used, the 6-letter model, 12-letter model, 20-letter model,
the revised Schneider—Wrede scale hydrophobicity, solvent accessibility, and
stochastic standard state accessibility values to convert linked protein sequences
to numerical sequences. Then we calculated the generalized fractal dimensions
Dy, the related spectra Cqy» the multifractal spectra f (), and the h(q) curves of
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the six kinds of numerical sequences of all 120 linked proteins. The curves of
Dq,Cq,f(a), h(q) showed that the numerical sequences from linked proteins
are multifractal-like and sufficiently smooth. The C, curves resemble the
phase transition at a certain point, while the f («) and h(q) curves indicate the
multifractal scaling features of proteins. In wavelet analysis, the choice of a
wavelet function should be carefully considered. Different wavelet functions
represent a given function with different approximation components. We [53],
chose the commonly used Daubechies wavelet db2 and computed the maximum
of the wavelet spectrum and the maximum of the local wavelet spectrum for the
six kinds of numerical sequences of all 120 linked proteins. The parameters from
the multifractal and wavelet analyses were used to construct parameter spaces
where each linked protein is represented by a point. The four classes of proteins
were then distinguished in these parameter spaces. The discriminant accuracies
obtained through Fisher’s linear discriminant algorithm are satisfactory in
separating these classes. We found that the linked proteins from the same family
or superfamily tend to group together and can be separated from other linked
proteins. The methods are also helpful to identify the family of an unknown
protein.

Zhu et al. [54] applied component similarity analysis based on EMD and
the new cross-correlation coefficient formula (16.27) to protein pairs. They then
considered maximum absolute value C of all the correlation coefficients of the
components as the similarity value for two proteins. They also created the thresh-
old of correlation [54]. Two signals are considered strongly correlated if the
correlation coefficient exceeds +0.7 and weakly correlated if the coefficient is
between £0.6 and £0.7. The results showed that the functional relationships of
some proteins may be revealed by component analysis of their IMFs. Compared
with those traditional alignment methods, component analysis can be evaluated
and described easily. It illustrates that EMD and component analysis can com-
plement traditional sequence similarity approaches that focus on the alignment
of amino acids.

From our analyses, we found that the measure representation based on the
detailed HP model and six-letter model, time series representation based on
physicochemical features of amino acids, Z-curve representation, the chaos game
representation of proteins can provide much information for predicting structure
classes and functions of proteins. Fractal methods are useful to analyze protein
sequences. Our methods may play a complementary role in the existing methods.
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