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Abstract

Classification of protein structures is important in the
prediction of the tertiary structures of proteins. In this pa-
per, we propose to decompose the chaos game representa-
tion of proteins into two time series, from which the pro-
tein sequences can be uniquely reconstructed. Multifrac-
tal analysis is applied to measures constructed from these
two time series. A total of 26 characteristic parameters are
calculated for each protein, which are used to construct
a 26-dimensional space. Each protein is represented by
one point in this space. A procedure is proposed to clas-
sify the structures of 100 large proteins consisting of four
structural classes. Fisher’s linear discriminant algorithm
demonstrates that the average accuracy for our classifica-
tion can reach 84.67%. Compared with the results for the
46 large proteins reported before, the method proposed here
has much better performance.

1. Introduction

The three-dimensional (3D) structure of a protein is de-
termined by its amino acid sequence (primary structure) via
the process of protein folding [1]. In order to explore the
mechanism of the protein folding process, some theoretical
works have suggested the designability and other concepts
based on lattice models [2-5]. It is possible to predict the
3D structures of proteins from their primary structures di-
rectly. But this is a challenging problem as there is no sim-
ple rule to map the primary structure into the corresponding
3D structure of a protein. Four main structural classes of
proteins were recognized based on the types and arrange-
ment of their secondary structural elements [6]. They are
the α class, the β class and those with a mixture of α and β
shapes called the α+β class and the α/β class. Information
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about protein structural classes may shed light on the above
problem. For example, the searching scope of conforma-
tion will be reduced if the structural class of the protein un-
der study is known [7]. Hence, it is informative to predict
the protein structural classes from the primary structures di-
rectly.

For the problem on identification of protein structural
classes from the amino acid sequences of proteins, there
are many methods which have been proposed [8]. Yu et al.
[9] used the hydrophobic free energy and solvent accessibil-
ity of proteins to construct several parameter spaces. They
found that some spaces could be used to distinguish and
cluster the 43 selected large proteins from the four struc-
tural classes. We recently discussed the clustering of 49
large proteins via multifractal analysis and a 6-letter model
[10]. In this paper, we classify 100 large proteins structures
to structural classes by some new methods, which improve
the results in Yu et al. [9] and Yang et al. [10].

Chaos game representation (CGR) of protein structures
was first proposed by Fiser et al. [11]. Later Basu et al.
[12] and Yu et al. [13] proposed several other kinds of CGR
of proteins. In this paper, we use the CGR method in Fiser
et al. [11] to convert the primary structures of proteins into
two time series, from which the primary structures of pro-
teins can be reconstructed uniquely. Then we apply multi-
fractal analysis to the time series to calculate certain char-
acteristic parameters of proteins. A total of 26 parameters
are achieved from the multifractal analysis. These parame-
ters are used to construct a space in order to classify protein
structures. Fisher’s linear discriminant algorithm demon-
strates that our classification method is satisfied.

2. Methods

Chaos game representation of proteins. Chaos game
representation was firstly proposed to analyze nucleotide
sequences [14]. The technique of CGR has been general-
ized and applied to analyze both the primary and secondary
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structures of proteins [11]. CGR is a useful way to visualize
protein sequences. We recapture the concept briefly here.

As proteins consist of 20 kinds of amino acids, a 20-
sided regular polygon can be used to visualize protein se-
quences. Firstly, the 20 kinds of amino acids are placed
on the vertices of the polygon in a certain manner. In this
paper, we use the alphabetical order to arrange the amino
acids, which is shown in Figure 1 for a typical protein.
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Figure 1. The chaos game representation
of protein 1B89 with the arrangement of the
amino acid residues in alphabetical order.

If the circle around the main polygon is the unit circle,
the (x, y) coordinates of a certain vertex i can be obtained
as {

v0
i,x = cos(2π ∗ i/20),

v0
i,y = sin(2π ∗ i/20), (1)

where i ranges from 0 to 19.
Given one protein sequence with length L, the coordi-

nates of the 0th point is (p0,x, p0,y) = (0, 0) and the coor-
dinates of the mth point can be determined:

{
pm,x = (v0

am,x − pm−1,x) ∗ κ + pm−1,x,
pm,y = (v0

am,y − pm−1,y) ∗ κ + pm−1,y,
(2)

where κ is a constant, which is set as 0.865 by Fiser et al.
[11] to satisfy the condition that the circles around the inner
polygons touch each other but do not overlap; am ranges
from 0 to 19 and is determined by both the amino acid type
of the mth amino acid along the protein sequence and the
arrangement of the amino acids on the vertices. It can be
seen from Eq.(2) that the coordinates of the mth point are
in fact determined by a couple of residues (current residue
and nearest preceding residue). We give the CGR of protein
1B89 in Figure 1 as an example.

It can be seen that the protein sequences can be recon-

structed uniquely from CGR by the maps
{

vm,x = [pm,x − (1− κ)pm−1,x]/κ,
vm,y = [pm,y − (1− κ)pm−1,y]/κ,

(3)

where m ranges from 1 to L. We can compare (vm,x, vm,y)
with the (x, y) coordinates of the 20 kinds of amino acids
{(v0

i,x, v0
i,y)}19i=0 to decide the amino acid type correspond-

ing to the mth point. Therefore, we can conclude that all in-
formation in the protein sequence is contained in the CGR.
Fiser et al. [11] concluded that CGR could be used to test
protein structure prediction methods. Motivated by this, it
seems possible to classify protein structures to protein struc-
tural classes using the CGR of proteins. Noticing that the
CGR of proteins is determined by the (x, y) coordinates, we
decompose the CGR into two time series: {pm,x}L

m=1 and
{pm,y}L

m=1. These two kinds of time series also contain
all information in the protein sequence and we will analyze
them by the multifractal analysis. We denote the former the
x time series and the latter the y time series. Figure 2 shows
the corresponding time series from CGR of protein 1B89.
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Figure 2. The two corresponding time series
from chaos game representation of proteins
1B89.

Measure for the time series and Multifractal analysis
(MFA). We construct a measure from the time series with a
method same as that of Yu et al. [15] and Yang et al. [10].
Because of the non-negative condition required to construct
a measure, we add 1 (as the smallest value is−1) to the time
series of protein proposed above. We [10] have discussed
before that such value may affect the values of parameters
in multifractal analysis, but it doesn’t have significant influ-
ences on the final classifying accuracies.

It should be emphasized that the ordering of the time se-
ries is rather important in the definition of this measure. By
disordering an old times series, one new time series can be
got but the the measure for the new time series is different
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from the old one. In another words, the measure defined
here is sensitive to the ordering of the time series. There-
fore, for a protein sequence, the ordering of the amino acids
acquires a greater importance than composition in the mea-
sure.

The most common algorithms of multifractal analysis
are the so called fixed-size box-counting algorithms. The
definition of the multifractal exponents τ(q), Dq, Cq, α(q)
and f(α) can be see in Refs. [9] and Yang et al. [10].

3. Data, results and discussions

The methods introduced in the previous sections can
only be used for long protein sequences (corresponding to
large proteins) as declared in Yu et al. [16]. The amino acid
sequences of 100 large proteins are downloaded from the
RCSB Protein Data Bank (http://www.rcsb.org/pdb/home/),
in which 46 has been studied in Yang et al. [10]. In fact,
there were 49 large proteins in Yang et al. [10]. How-
ever, because the class information of three proteins (1F1S,
1OY6 and 1T3T) given in Yang et al. [10] and Yu et al. [16]
is updated, only the remaining 46 proteins are used here.
These 100 proteins, which are listed in Table 1, belong to
four structural classes.

Given an amino acid sequence of a protein, we use the
CGR to covert it into two time series. Then a measure is
constructed from each time series as in Ref. [15]. Now we
can apply the MFA to the constructed measures. As exam-
ples, the Dq , Cq, α(q) curves and the multifractal spectrum
f(α) of the x time series of protein 1B89 are shown in Fig-
ure 3.

−15 −10 −5 0 5 10 15
0.9

0.95

1

1.05

1.1

1.15

q

D
q

alphabetical order
random order

−15 −10 −5 0 5 10 15
0

1

2

3

4

5

6

7
x 10

−3

q

C
q

alphabetical order
random order

−15 −10 −5 0 5 10 15
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

q

α
(q

)

alphabetical order
random order

0.9 0.95 1 1.05 1.1 1.15 1.2
0

0.2

0.4

0.6

0.8

1

α

f(
α

)

alphabetical order
random order

Figure 3. The four kinds of multifractal
curves for x time series of protein 1B89 with
two kinds of arrangement manners of amino
acid residues.

From these calculations, a total of 26 parameters is

Table 1. The 100 proteins represented by the PDB ID in
the PDB database. The first four letters are the PDB ID and
the fifth letter stands for the chain selected. The numbers
in the bracket after the proteins are the lengths for the pro-
teins(chains).

Class Proteins
α 1G6IA(545) 1GKMA(509) 1JFBA(404) 1M5NS(485)

(26) 4CTSA(437) 1CPT(428) 1GLM(470) 1MHLC(466)
1MMOD(512) 1OXA(403) 1PHB(414) 1ROM(403)
1VNC(609) 1XSM(390) 2BCT(516) 2BMHA(455)
1B89(449) 1IAL(453) 1HO8(480) 1B8F(509)
1DL2(511) 5EAS(548) 1BKE(581) 1BJ5(585)
1AVC(673) 1ST6(1069)

β 1C9UB(454) 1F8EA(388) 4AAHA(571) 1EUR(365)
(25) 1IDK(359) 1PMI(440) 1TSP(559) 2CAS(548)

2SIL(381) 2TBVA(387) 3NN9(388) 4BCL(366)
1A65(504) 1A6C(513) 1B9S(390) 1DAB(539)
1EUT(605) 1FNF(368) 1C8F(548) 1DBG(506)
1DZL(505) 1KCW(1046) 1P2Z(968) 1P30(952)
1W0O(781)

α + β 1A2N(419) 1B65A(375) 1GK9B(557) 1R52B(382)
(22) 2JDXA(385) 1EPS(427) 1GCB(454) 1LML(478)

1PNKB(557) 1UAE(419) 1DMT(696) 1EWF(456)
1OIE(532) 1W1O(534) 1USH(550) 1AOP(497)
1KA2(499) 1V0R(506) 5JDW(386) 1SIJ(907)
5LDHA(333) 1JMUG(365)

α/β 1LK9A(448) 1LKXD(697) 1LLFA(534) 1M1NA(491)
(27) 1PMOC(466) 1UZBA(516) 1BYB(495) 1AG8A(499)

1CBG(490) 1GPB(842) 1MIOA(533) 1TPLA(456)
2DKB(433) 2OLBA(517) 2TS1(419) 1A8I(841)
1AOV(686) 1BFD(528) 1CRL(686) 1AIV(686)
1AK5(503) 1AKN(579) 1AX9(537) 1AXR(842)
1B1X(689) 1FA9(846) 1EJJ(511)

achieved. They are listed in Table 2.
These 26 parameters are then used to construct a 26-

dimensional (26D) space. In this parameter space, one
point represents a protein. We want to find out whether pro-
teins from the four structural classes can be separated in this
space.

As in Refs. [9] and Yang et al. [10], Fisher’s dis-
criminant algorithm is used to find a classifier in the pa-
rameter space for a training set. The given training set
H = {x1, x2, · · · , xn} is partitioned into n1 ≤ n train-
ing vectors in a subset H1 and n2 ≤ n training vectors in a
subset H2, where n1 +n2 = n and each vector xi is a point
in the 26D parameter space. Then H = H1 ∪H2.

We use the whole data set as the training set because the
selected protein data set is small. The discriminant accura-
cies for re-substitution analysis are defined as PH1 = ncH1

n1

and PH2 = ncH2
n2

, where ncH1 and ncH2 denote the number
of correctly discriminating H1 elements and the number of
correctly discriminating H2 elements in the training set, re-
spectively. The result obtained in this way can be used to
check the self-consistency of a predictor, especially for its
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Table 2. The 26 parameters from the calculation. x-ts and
y-ts represent x time series and y time series, respectively;
Cmax is the maximum value of Cq with q ranging from
−15 to 15 and q0 is the value of q corresponding to Cmax;
Δf = f(αmax) − f(αmin), Δα = αmax − αmin.

Order Data Parameter Order Data Parameter
1 x-ts D−1 14 y-ts Δf
2 x-ts D1 15 y-ts D−1

3 x-ts D2 16 y-ts D1

4 x-ts C−1 17 y-ts D2

5 x-ts C1 18 y-ts C−1

6 x-ts C0 19 y-ts C1

7 x-ts Cmax 20 y-ts C0

8 x-ts q0 21 y-ts Cmax

9 x-ts αmax 22 y-ts q0

10 x-ts αmin 23 y-ts αmax

11 x-ts Δα 24 y-ts αmin

12 x-ts f(αmax) 25 y-ts Δα
13 x-ts f(αmin) 26 y-ts f(αmax)

algorithm part. A predictor certainly cannot be deemed to
be a good one if its self-consistency rate is poor [17].

We propose the following procedure to classify protein
structures in the 26D space to structural classes, which con-
sists of three steps: Step 1: classify the proteins of the α
class from the other proteins in the {β, α+β, α/β} classes;
Step 2: classify the β class proteins from the other proteins
in the {α+β, α/β} classes; Step 3: classify the α+β class
proteins from the proteins of the α/β class.

The discriminant accuracies PH1 in step 1 to 3 are
84.62%, 84.00% and 81.48% respectively, while the dis-
criminant accuracies PH2 in step 1 to 3 are 83.78%,
87.76% and 86.36% respectively. The average accuracy
is 84.67%, which is relatively satisfactory.

In order to compare with the methods in Yu et al. [9]
and Yang et al. [10], we calculate the accuracies for the
46 proteins in Yang et al. [10] with the method here. Us-
ing the present method, the discriminant accuracies PH1 in
step 1 to 3 are 97.14%, 100.00% and 100.00% respec-
tively, while the discriminant accuracies PH2 in step 1 to
3 are all 100.00%. If we use the method in Yang et al.
[10], the discriminant accuracies PH1 in step 1 to 3 are
100.00%, 92.86% and 91.67% respectively, while the dis-
criminant accuracies PH2 in step 1 to 3 are 84.21%, 86.96%
and 83.33% respectively. We can see the method proposed
here really improves the performance of protein structure
classification.

It is importnat to discuss the effect of arrangement of the
amino acids on the vertices of the regular 20-polygon. We
arranged the amino acids on the vertices of the 20-polygon
randomly and then repeat the above calculations. We tested
the classification result of proteins to see whether they affect
the accuracies. For example, we set the amino acids E, Y,

Q, A, K, N, V, H, P, C, S, F, T, D, R, G, W, M, L and I on the
first vertex (vertex 0), the second vertex (vertex 1), · · ·, the
nineteen vertex (vertex 18), and the twentieth vertex (ver-
tex 19), respectively. In this randomly selected order case,
the discriminant accuracies PH1 in step 1 to 3 are 84.62%,
68.00% and 96.30% respectively, while the discriminant ac-
curacies PH2 in step 1 to 3 are 77.03%, 85.71% and 90.91%
respectively. This suggests that the accuracies in different
steps are in fact affected by the arrangement. However, the
overall accuracies with different assignments are similar to
each other.

It should be stressed that the multifractal analysis here
is applied to the measure constructed from time series. As
mentioned before, such measure is sensitive to the ordering
of the time series. Different arrangements of amino acids
on the polygon will lead to different ordering of the time
series for a given protein sequence. Such differences will of
course lead to different values of the 26 calculated parame-
ters. This can be seen more clearly in Figure 3. As a result,
it is expected that the results in each classification step are
affected by the arrangement methods.

Yu et al [13] proposed the CGR of protein sequences
from complete genomes based on the detailed HP model,
and the measure they defined was different from that in this
paper. As the protein sequences from complete genomes
were rather long (more than 105) to get enough points in
the CGR, the measure could be defined by the number of
points lying in the subsets of the CGR [13]. In such a way,
the arrangement manner of the amino acid residues has no
influence on the measure and furthermore no effect upon
the values of Dq, Cq , α(q) and f(α). However, the longest
protein sequence considered in this paper is less than 1100,
the definition of measure in such a way may be inappropri-
ate as the measure of most subsets of the CGR will be zero
when the subsets are too small. As a result, some biological
meaning may be lost and we consider using the definition
of measure in Yu et al. [15] and Yang et al. [10].

Basu et al [12] proposed another kind of CGR of pro-
teins using a regular 12-polygon by grouping together sim-
ilar amino acid residues. The 12 groups of amino acids are
then {A, G}, {C}, {D, E}, {F, Y}, {H}, {I, L, V, M}, {N},
{P}, {Q}, {R, K}, {S, T}, and {W}. Firstly, we also use
an alphabetical order arrangement in the CGR and the dis-
criminant accuracies PH1 in step 1 to 3 are 76.92%, 80.00%
and 88.89% respectively, while the discriminant accuracies
PH2 in step 1 to 3 are 85.14%, 85.71% and 100.00% re-
spectively. If a certain group contains more that one kind
of amino acids, we use the first letter in the group for its
representation. For example, for the group {I, L, V, M},
the representing amino acid residue is I. Then we consider
a random arrangement of these groups on the vertices of
the 12-polygon [12]. In a randomly selected order case,
the discriminant accuracies PH1 in step 1 to 3 are 80.77%,
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76.00% and 96.30% respectively, while the discriminant ac-
curacies PH2 in step 1 to 3 are 77.03%, 93.88% and 90.91%
respectively. The discussion here is analogous to that in the
20-polygon CGR. It can be seen that even though there are
some differences between different classification steps, the
overall accuracies don’t have too much differences. Fur-
thermore, the overall accuracy with the 12-polygon CGR is
similar to that with the 20-polygon CGR.

4. Conclusions

Identification of protein structural classes is important in
the prediction of the 3D structures. Chaos game representa-
tion of proteins is a useful way to analyze proteins as it pro-
vides a visualization of protein sequences. Most important
of all, the protein sequence can be reconstructed uniquely
from the CGR. In order to analyze CGR of proteins more
conveniently, we decompose the CGR of proteins into two
time series.

Multifractal analysis is a useful tool in many different
fields. Multifractal analysis of the measure for the con-
structed time series of proteins provides useful information
to classify protein structures. For each protein, a total of
26 parameters is calculated through multifractal analysis.
In order to classify protein structures, the 26 parameters are
used to construct a 26D parameter space. Then each protein
is represented by a point in this space. With Fisher’s linear
discriminant algorithm, we can classify protein structures to
structural classes with an average accuracy of 84.67% for
the 100 large proteins. Compared with the results for the 46
large proteins in Yang et al. [10], it clearly indicates that
the methods proposed here improve the results reported in
Yu et al. [9] and Yang et al. [10].
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