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In two recent studies published in Nature and Science,
researchers successfully developed unified AI architectures
capable of predicting the structures of all biomolecules. This
remarkable advancement is expected to have a profound
impact on future biomedical research and drug design by
offering crucial information regarding the interactions that
govern both physiological and pathological processes.
Predicting the structure of monomeric proteins has been almost

accomplished by AlphaFold2 (AF2).1 Once the monomer struc-
tures are known, the next step is to predict how these monomers
interact with other biomolecules, including proteins, nucleic acids,
and small molecules. These interactions form the fundamental
basis that drive the complex and dynamic behavior of living
systems. Accurate prediction of biomolecular interactions remains
a grand challenge in computational structural biology.
Recently, several methods, including AlphaFold3 (AF3)2 and

RoseTTAFold All-Atom (RFAA),3 have been developed to predict
biomolecular interactions. These advances are built on the
tremendous success of monomer structure prediction by AF2
and RoseTTAFold.4 Overall, these works demonstrate that it is
possible to predict the structures for all biomolecules under a
unified AI architecture.
Compared to AF2, several key modifications are made in AF3 to

accommodate more types of biomolecules rather than just
proteins, as in AF2. One of the most notable changes is the
replacement of the invariant point attention (IPA)-based structure
module in AF2 with a generative diffusion architecture in AF3. The
diffusion operates on the raw coordinates and does not require
rotational and translational equivariance. Unlike conventional
diffusion, the diffusion in AF3 is conditioned on the input
embeddings obtained from the multiple sequence alignments
and homologous templates of proteins and/or nucleic acids, as
well as reference conformers of ligands. This conditioning ensures
that the generated structure models are compatible with the
inputs, resembling the goal of typical structure prediction.
Removing such a condition may enable the network to generate
dynamic structures, which would be particularly valuable for
studying the alternative functional states of structured proteins
and the conformational ensembles of intrinsically disordered
proteins.
AF3 demonstrates significantly improved accuracy in predicting

protein–ligand interactions. Benchmarks show that AF3 outper-
forms both classical and deep learning-enhanced docking tools. In

benchmark tests conducted in AF3, the percentage of correctly
predicted ligand poses, specifically those with a pocket-aligned
ligand RMSD (root mean square deviation) of < 2 Å, was found to
be 76.4% for AF3.2 In comparison, Vina only achieved a success
rate of 52.3%.5 This improvement is remarkable given that the
ground truth structure of the protein bound to the ligand (called
the holo structure) is used as input for Vina but not for AF3. When
the true ligand-binding pocket information is used as additional
input, the accuracy of AF3 increases to 90.2%.
However, in reality, the holo protein structure is often

unavailable. When predicted structure models (by AlphaFold-
Multimer V2.36) are used as inputs, Vina’s accuracy reduces to
13.1%. With sequence input, AF3 almost doubles the accuracy of
RFAA (76.4% vs 42.0%). Both AF3 and RFAA outperform
protein–ligand docking methods that use predicted protein
structure models as inputs. This can be easily explained by the
fact that conformational changes occur upon ligand binding,
which is known as the “induced fit” mechanism. The protein
structure is mostly treated as a rigid body in docking methods,
which is unlikely to work well when conformational changes
happen during the binding event. In contrast, AF3 and RFAA fold
the complex structures from scratch (“simultaneous folding”),
which can better address conformational changes. Additionally, as
data-driven approaches, the high accuracy achieved by AF3 and
RFAA is closely related to the availability of the rich and high-
quality data of protein–ligand interactions (> 500,000 biologically
relevant interactions in the Q-BioLiP database7).
AF3 also has improved performance for other tasks, including

protein monomers, RNAs, protein–protein interactions,
protein–nucleic acid interactions, and post-translational modifica-
tions. The improvement over AlphaFold-Multimer for protein
monomers is marginal (~1.5%), probably because AlphaFold-
Multimer is already very accurate for monomeric protein structure
prediction. Though AF3 outperforms other automated methods
for RNAs, protein–protein interactions, and protein–nucleic acid
interactions, the overall accuracy is still far from satisfactory. One
of the key reasons is that the experimental data available for
training are limited.7

The prediction of protein–ligand interactions by AF3 and RFAA
has the potential to greatly expedite the drug discovery process.
By providing more precise modeling of these interactions, virtual
screening of drugs can become more effective. However, due to
the less-than-ideal accuracy and success rate of AF3, it remains

Published online: 14 June 2024

1MOE Frontiers Science Center for Nonlinear Expectations, Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, Shandong, China.
2Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China. 3Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and
Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China. ✉email: lupeilong@westlake.edu.cn; yangjy@sdu.edu.cn

www.nature.com/cr
www.cell-research.comCell Research

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41422-024-00991-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41422-024-00991-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41422-024-00991-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41422-024-00991-8&domain=pdf
http://orcid.org/0000-0001-5894-9268
http://orcid.org/0000-0001-5894-9268
http://orcid.org/0000-0001-5894-9268
http://orcid.org/0000-0001-5894-9268
http://orcid.org/0000-0001-5894-9268
https://doi.org/10.1038/s41422-024-00991-8
mailto:lupeilong@westlake.edu.cn
mailto:yangjy@sdu.edu.cn
www.nature.com/cr
http://www.cell-research.com


uncertain to what extent virtual screening can be improved. It is
particularly interesting to investigate whether AF3 can identify
small molecules that bind to target proteins in a chemical library,
as well as determine the true positive rate. To further enhance
these methods, future research could integrate the binding affinity
between the ligand and protein, as well as the experimental
conditions used for measuring the affinity, into the training
process of the networks. To accomplish this, the pharmaceutical
industry may need to consider making their data of measured
binding affinities between numerous ligands and proteins
available to the public for gathering sufficient information for
the prediction of not only the complex structure, but also the
binding affinity and even the “druggability”.
Notably, the diffusion modules utilized in AF3 and RFdiffusion

All-Atom (RFdiffusionAA)3 are generative in nature. RFdiffusionAA
can generate new proteins around small molecules of interest.
These generated proteins were further confirmed through
experimental validation, and RFdiffusionAA holds significant
potential in the development of small molecule-binding proteins
and sensors. Conversely, by fine-tuning AF3 or RFAA on diffusion
denoising tasks, it may be feasible to generate novel small
molecules that fit into specific pockets of target proteins. The
prospect of designing small-molecule drugs solely based on
protein sequence information is fascinating.
Unlike RFAA, AF3 has not been made open source, which could

potentially limit its impact. Currently, only a web server is offered

with restricted access. The DeepMind team said they were
“working on releasing the AF3 model for academic use” within
6 months after an open letter entitled “AlphaFold3 Transparency
and Reproducibility” was posted on May 11, 2024 (https://
zenodo.org/records/11186537). We hope to see the release of
AF3 model shortly so that it can be used in a wide range of
scientific and technological domains, improving human health in
the end.
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