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Abstract

Motivation: Coenzyme A (CoA)-protein binding plays an important role in various cellular functions

and metabolic pathways. However, no computational methods can be employed for CoA-binding

residues prediction.

Results: We developed three methods for the prediction of CoA- and CoA derivatives-binding resi-

dues, including an ab initio method SVMpred, a template-based method TemPred and a

consensus-based method CoABind. In SVMpred, a comprehensive set of features are designed

from two complementary sequence profiles and the predicted secondary structure and solvent ac-

cessibility. The engine for classification in SVMpred is selected as the support vector machine. For

TemPred, the prediction is transferred from homologous templates in the training set, which are

detected by the program HHsearch. The assessment on an independent test set consisting of 73

proteins shows that SVMpred and TemPred achieve Matthews correlation coefficient (MCC) of

0.438 and 0.481, respectively. Analysis on the predictions by SVMpred and TemPred shows that

these two methods are complementary to each other. Therefore, we combined them together,

forming the third method CoABind, which further improves the MCC to 0.489 on the same set.

Experiments demonstrate that the proposed methods significantly outperform the state-of-the-art

general-purpose ligand-binding residues prediction algorithm COACH. As the first-of-its-kind

method, we anticipate CoABind to be helpful for studying CoA-protein interaction.

Availability and implementation: http://yanglab.nankai.edu.cn/CoABind

Contact: zhenling@tju.edu.cn or yangjy@nankai.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Coenzyme A (CoA) is ‘an important catalytic substance involved in

the cellular conversion of food into energy’ (Shampo and Kyle,

2000). CoA was first discovered more than 70 years ago by

Lipmann (Lipmann, 1945), who was awarded the Nobel Prize

owing to his contribution to the discovery and other research of

CoA (Shampo and Kyle, 2000). Due to its prominent role in the me-

tabolism of carboxylic acids, including short- and long-chain fatty

acid, substantial experimental studies have been performed on CoA

and CoA derivatives (e.g., acyl-CoA) (Sibon and Strauss, 2016). For

example, in the latest version of the Protein Data Bank (PDB) (Rose

et al., 2017), about 500 structures of CoA-binding proteins have

been determined. However, it is often time-consuming and costly to

carry out wet-lab experiments. And it is necessary to make full use

of the existing experimental data to develop corresponding compu-

tational algorithms for CoA-related studies, such as evolutionary

analysis of CoA-binding proteins and CoA-binding residues predic-

tion. For example, Engel and Wierenga compared the topologies of
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the structures of CoA-binding proteins in PDB and found that CoA-

binding proteins had a diversity of folds (Engel and Wierenga,

1996). Burton et al. (2005) investigated the distribution and conser-

vation of acyl-CoA-binding proteins using sequence alignment-

based evolutionary analysis.

In this work, we proposed three computational algorithms to

predict CoA- and CoA derivatives-binding residues in proteins.

Specifically, we first designed an ab initio predictor SVMpred by

using the evolution-enriched information as the inputs of support

vector machine (SVM). We also trained a template-based method

TemPred, using homologous templates recognized by the profile-

profile alignment program HHsearch (Soding, 2005). Our assess-

ment suggests that these two methods are complementary to each

other. Therefore, the third method CoABind was developed, by

combining SVMpred and TemPred. CoABind was shown to have

the highest accuracy among these three methods. In addition, the

proposed methods significantly outperform the state-of-the-art gen-

eral purpose ligand-binding residues prediction algorithm COACH.

2 Materials and methods

2.1 Benchmark dataset
The benchmark dataset was constructed from the BioLiP database

(Yang et al., 2013b), which is a resource for biologically relevant lig-

and–protein interaction. To obtain enough data for training and

test, we selected not just the CoA ligand with ID ‘COA’ but also

other CoA derivatives. In total, there are 62 CoA derivatives, which

share � 0.8 similarity (measured by the Tanimoto coefficient of lig-

and fingerprints) with CoA. Please refer to the Supplementary Table

S1 for the summary of these ligands and the corresponding number

of binding protein chains.

In total, we extracted 1972 protein chains in BioLiP that bind

any of the 63 selected ligands. Two steps are used to process these

data. The first is to enrich experimental annotations and the second

is to remove redundancy. (i) We used CD-HIT (Huang et al., 2010)

to cluster the chain sequences with 100% sequence identity. The

longest sequence in a cluster is selected as the representative of the

cluster, resulting to 776 sequences. To enrich experimental binding

data, we transferred the CoA-binding residues of other sequences in

a given cluster to the corresponding representative sequence based

on the pairwise sequence alignment. This procedure was motivated

by a recent work to assess the predictive quality of DNA/RNA-bind-

ing residues (Yan et al., 2016). By such procedure, the number of

CoA-binding residues was enriched by about 14%, compared with

the original binding residues. (ii) We removed the redundancy of the

776 sequences from the first step at <25% sequence identity, by uti-

lizing PSI-CD-HIT (Huang et al., 2010). Finally, we got 219 se-

quences with 4024 CoA-binding residues. This dataset was then

split into two non-overlapping subsets (2/3 for training and 1/3 for

test) at random, including the training set with 146 proteins and

2679 binding residues (TR146), and the test dataset with 73 pro-

teins and 1345 binding residues (TE73). The above benchmark data-

sets are available for download at: http://yanglab.nankai.edu.cn/

CoABind/benchmark.

2.2 Architecture of the CoABind method
As shown in Figure 1, the proposed predictor CoABind is a combin-

ation of the ab initio predictor SVMpred and the template-based

predictor TemPred. In CoABind, the propensity score pc for each

residue is calculated as the average of the two corresponding pro-

pensity scores from SVMpred and TemPred, respectively. A residue

is then predicted as a binding residue if pc is higher than a predeter-

mined cutoff, which is tuned using the training set.

2.2.1 Template-based method TemPred
Template-based modeling is a leading approach to protein structure

and function prediction. Therefore, we first proposed a template-

based predictor TemPred, by following the flow chart shown in the

darker gray panel of Figure 1. The query sequence is aligned to tem-

plates in the training set by the profile-profile alignment program

HHsearch (Soding, 2005). The profile of a sequence is represented

in the form of a hidden Markov model (HMM) generated by the

program HHblits (Remmert et al., 2012). Default parameters are

used to run HHsearch. The top-ranked templates with e-value �
0.001 are used to transfer the binding annotations to the query

based on the template-query alignment. For the ith residue in the

query sequence, the propensity score pt(i) for binding is calculated

as:

pt ið Þ ¼ 1

N

XN
j¼1

Probj � dj ið Þ (1)

where N is the total number of templates with e-value � 0.001;

Probj is the probability value from HHsearch, measuring the quality

of the alignment between the jth template and the query; and dj(i) is

an indicator function, which equals to 1 if the ith residue in the

query sequence is aligned to a binding residue in the jth template,

and 0 otherwise. When there is no template with e-value � 0.001,

the one ranked at the top is used instead. The binary prediction by

TemPred is then obtained by setting a cutoff for the propensity

score: a residue is predicted as a binding residue if the propensity

score is higher than the cutoff. This cutoff will be determined later

using the training set. It is apparent that TemPred depends on

the availability of homologous templates. For hard targets that

HHsearch does not find any templates, no prediction can be made,

and the corresponding metrics are set to 0 for assessment.

2.2.2 Ab initio predictor SVMpred
As mentioned earlier, the template-based predictor TemPred does

not work for queries lacking homologous templates. To solve this

problem, we developed the ab-initio predictor SVMpred that does

not rely on templates. As shown in the lighter gray panel of

Figure 1, the query is submitted to three programs PSI-BLAST

(Altschul et al., 1997), HHblits (Remmert et al., 2012) and

SPIDER3 (Heffernan et al., 2017), to generate two sequence profiles

and predict its secondary structure and solvent accessibility, respect-

ively. They are believed to contain rich evolution and structure in-

formation and have been widely used in the field of protein structure

prediction (Xia et al., 2017). Here, we utilize them to encode each

amino acid in the query for CoA-binding residues prediction.

Specifically, each amino acid is represented by a 81D feature vector,

which are next normalized to the range of [0, 1] and fed into SVM

for classification. A residue is predicted as a binding residue if the

probability score from SVM is higher than the specified threshold.

These 81 features were selected from a total of 195 features ex-

tracted from the neighboring residues in a sliding window. To re-

duce the time used for training, the same window size was applied

to all feature groups introduced later.

PSI-BLAST-based features. Evolutionary conservation is sug-

gested to be a powerful indicator for the functionally important resi-

dues, which are usually more conserved than others. The residue

conservation can be inferred from a multiple sequence alignment
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(MSA). To generate a MSA for each query sequence, PSI-BLAST is

used to search its homologous sequences from the NCBI’s non-

redundant (NR) dataset with three iterations and the e-value thresh-

old of 0.001 (‘-j 3 -h 0.001’). A position-specific scoring matrix

(PSSM) and a probability matrix are then calculated from the MSA.

The conservation of each amino acid is represented by the 20D fea-

tures from the PSSM, the relative entropy (RE) and the close neigh-

bors correlation coefficient (CNCC) (Taherzadeh et al., 2016) from

the probability matrix.

REi ¼
X20

k¼1

pik � log2

pik

bk
(2)

CNCCij ¼
Pi � Pj

jPijjPjj
¼

X20

k¼1
pikpjkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX20

k¼1
p2

ik

X20

k¼1
p2

jk

q ; i 6¼ j (3)

where i, j ¼ 1, . . ., L, are the ith and the jth residue, respectively, in

the query sequence with L amino acids; k represents one of the 20

standard amino acids; bk is the Robinson background frequency of

the kth amino acid (Robinson and Robinson, 1991); pik is the prob-

ability of the kth amino acid appearing at the ith row of the MSA

(corresponding to the ith position of the query); Pi is the 20D prob-

ability vector, corresponding to the ith row in the probability ma-

trix. Note that, we used a sliding window of size w to calculate the

CNCC for each residue in the query. Therefore, we extracted 20 þ
w features in total from PSI-BLAST.

HHblits-based features. Besides PSI-BLAST, the program

HHblits is used to generate another sequence profile, which is repre-

sented in the form of a HMM (Remmert, et al., 2012). The HMM

profile is obtained by scanning the query sequence through the

database uniprot20_2015_06 with parameters ‘-n 3 -maxfilt

500 000 -diff inf -id 99 -cov 60’. Each line in this profile comprises

the emission frequencies (EFs) for the 20 standard amino acids, 7

transition probabilities and 3 local diversities. The EF is defined by

the equation:

EFik ¼ �1000� log2pik (4)

where i ¼ 1, . . ., L is the i-th residue in the query; k represents a

standard residue; Based on this equation, each EFik is converted into

probability pik, which is 0 when the EF is denoted by a ‘*’. Similar

to the PSI-BLAST-based features, the recovered probability matrix is

then used to measure the residue conservation, by including the 20D

vector for this matrix, the RE, and the CNCC as well. Here, we used

the window size of w for the calculation of HMM-based CNCC val-

ues. Therefore, the resulting HHblits-based feature set contains 20

þ w features.

SPIDER3-based features. The predicted secondary structure (SS)

and solvent accessibility (SA) have been applied to the detection of

RNA-/DNA- and peptide-binding residues (Peng and Kurgan, 2015;

Taherzadeh, et al., 2016; Zhang, et al., 2010). We employed the

program SPIDER3 (Heffernan et al., 2017) to predict the SS and SA

for each sequence. Here, the SS profile comprises the most likely SS

state and the corresponding probability in each of the three states,

which are a-helix, b-strand and random coil. The SA profile gives

the predicted solvent accessible surface area for each residue. We

normalized it into a relative SA profile (RSA) by the corresponding

maximum possible solvent accessible surface area for each residue.

A residue is regarded as exposed if its RAS value is >0.5; otherwise,

it is regarded as buried. For each residue, a sliding window of size w

centered at this residue is used to extract features. For the SS profile,

we calculated the fraction of each SS state (three features) and col-

lected the probability values for all residues inside the window (3*w

features). For the RSA profile, to represent the status of a residue

(exposed or buried), two features are used (0, 1; or 1, 0). In addition,

the RSA values for all residues inside the sliding window of size w

are also used (w features). To summarize, each residue is converted

into a (5 þ 4*w)-dimensional feature vector from the SPIDER3

profile.

Support vector machine. For a window of size w, the total number

of features extracted is (45 þ 6*w). These features are fed into SVM

for training and test. This was motivated by the fact that SVM is one

of the state-of-the-art algorithms with wide applications in classifica-

tion problems, such as protein fold classification (Chen and Kurgan,

2007; Xia et al., 2017) and peptide-binding residues prediction

(Taherzadeh et al., 2016). SVM has several basic kernel functions,

including linear, polynomial, radial basis function (RBF) and sigmoid.

We used the RBF kernel here since it provided higher accuracy in our

concerned classification problem. We need to optimize the SVM regu-

larization factor C and the RBF kernel parameter c, which were imple-

mented by the strategy of grid search. That is to say, each pair of tested

values for parameters C and c is represented by a point in a 6� 5 grid,

where the values for C and c are [20, 21, . . ., 25] and [2�1, . . ., 2�5], re-

spectively. The parameter optimization is conducted to maximize the

average Matthews correlation coefficient (MCC) evaluated by 5-fold

cross validation on the training set. The LIBSVM package
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Fig. 1. The architecture of the consensus-based method CoABind, by assembling the template-based predictor TemPred and the ab initio predictor SVMpred
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(https://www.csie.ntu.edu.tw/~cjlin/libsvm/) was used for the imple-

mentation of SVM.

2.3 Evaluation measures
The predictions by the proposed methods contain both binary values

and propensity scores. The binary value indicates each residue in the

query sequence to be a CoA-binding residue or not; and the propen-

sity score quantifies its probability of being a CoA-binding residue.

Since the data are highly imbalanced (positive to negative ratio is

about 1:15), the binary prediction is assessed by the following three

metrics, Precision (Pre), Recall (Rec) and MCC:

Pre ¼ TP

TPþ FP
; Rec ¼ TP

TPþ FN
(5)

MCC ¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þ

p (6)

where TP (true positive) is the number of correctly predicted binding

residues, TN (true negative) is the number of correctly predicted

non-binding residues, FP (false positive) is the number of non-

binding residues predicted to be binding residues, and FN (false

negative) is the number of binding residues predicted to be

non-binding residues. The value of a metric equals zero when the de-

nominator is zero. The higher the above metrics are, the better the

prediction is. MCC ranges from �1 to 1 and it is especially suitable

for assessing data with imbalanced distribution.

The predictions with propensity scores are evaluated by the re-

ceiver operating characteristic (ROC) curve and the area under the

ROC curve (AUC). For a cutoff p (from 0 to 1), the residues with

propensity score � p are set as positives (i.e. binding residues);

otherwise, the residues are set as negatives (non-binding residues).

Thus one point (FP-rate, TP-rate) in a plane is obtained from each

cutoff, where TP-rate ¼ TP/(TP þ FN), and FP-rate ¼ FP/(FP þ
TN). The ROC curve is then generated by connecting all points. The

AUC implies the quality of the prediction. The AUC value is be-

tween 0 and 1 and the higher AUC value, the better the prediction

is. An AUC value of around 0.5 suggests a random prediction.

Because higher FP-rates will lead to a massive over-prediction of

binding residues while this part of the curve dominates the AUC

value, another metrics (AUCL) is also calculated by limiting the re-

gion to the low FP-rate from 0 to 0.1. The ratio (R) of AUCL over

the corresponding AUCL for random prediction is also reported to

reflect the accuracy of the prediction. These two metrics were pro-

posed in (Meng and Kurgan, 2016; Yan and Kurgan, 2017) and we

mainly use them for the comparisons between different methods. It

is worthwhile to mention that all metrics defined above were com-

puted per protein and the averages over all proteins in a dataset are

reported.

3 Results

3.1 Parameter optimization and feature selection
There are four parameters to be determined: the window size w in

SVMpred and the three cutoffs for making binary predictions in

SVMpred, TemPred and CoABind. The parameters are selected to

optimize the MCC on the training set TR146 based on 5-fold cross

validation. When tuning the window size, the cutoff in SVMpred

was set to the default one in LIBSVM (i.e. 0.5). The Supplementary

Figure S1 shows that the maximum MCC was achieved at the win-

dow size of 25. At this window size, the total number of features is

195 (¼45 þ 6*25). These features may be redundant and thus

feature selection was applied to select a subset of non-redundant

and key features. To this end, the correlation-based feature subset

selection algorithm implemented in Weka (Hall et al., 2009) was

applied with default parameters. A total of 81 features were se-

lected, at which the MCC was similar to that with all features (0.32

versus 0.33). With these 81 features, we further trained the cutoff

for making binary predictions to maximize the MCC. The

Supplementary Figure S2 shows that the MCC is the highest when

the cutoff is 0.14. The cutoffs for TemPred and CoABind were ad-

justed similarly and the optimal values are 0.3 and 0.31,

respectively.

3.2 Contribution of features in SVMpred
The contribution of the 81 selected features to the SVMpred predic-

tion was investigated as below. We found these features are from

different profiles: 28 from the PSI-BLAST profile, 16 from the

HHblits profile and 37 from the SPIDER3 profile. Thus these fea-

tures are divided into three groups correspondingly. We first investi-

gate the contribution of each individual feature group to the

prediction. This analysis is performed on the training set based on

5-fold cross validation. The predictive quality is presented by the

average MCC and AUC values, which is summarized in Figure 2.

We can see that all the three groups of features are powerful indica-

tors of CoA-binding residues, based on the fact that the MCC and

AUC values for the SVM models built with individual group of fea-

tures are above 0.15 and 0.69, respectively. The SVM model with

the SPIDER3-based features has the highest MCC value of 0.289

and AUC value of 0.728. When combining any two groups of fea-

tures, we found that the combinations lead to better SVM models

with 15–121% improvement in MCC and 3–8% increase in AUC

(the gray bars to the white bars in Fig. 2). This observation suggests

that the three feature groups are complementary to each other. We

note that PSSM feature group is different from the HMM feature

group, even if both of them are derived from MSA. This difference

may result from different algorithms for alignment (sequence-profile

alignment in PSI-BLAST, and profile-profile alignment in HHblits).

When combining all these features together to build the model, it

makes 36–160% higher MCC and 7–11% higher AUC than any in-

dividual SVM models (the black bar to the white bars in Fig. 2). It

also has at least 6% more MCC and 2% more AUC than the com-

binations with two feature groups (the black bar to the gray bars in

Fig. 2). This further supports the conclusion that these features are
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Fig. 2. Evaluation on the SVM models built with individual feature group and

combinations of feature groups. The white, gray, black bars show the average

MCC (the left panel) and AUC (the right panel) values for the corresponding

SVM models by 5-fold cross validation on the training set. SVMi (i ¼ 1, 2, 3)

denotes the SVM model built with the feature group i, where 1, 2 and 3 repre-

sent the HHblits-, PSI-BLAST- and SPIDER3-based feature set, respectively.

SVMij (i 6¼ j, i, j ¼ 1, 2, 3) represents the SVM model by using the feature set i

together with the feature set j. SVMpred is the model by combining all

features

Prediction of CoA-binding residues 2601

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/34/15/2598/4934943
by University of Washington user
on 28 July 2018

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
Deleted Text:  
Deleted Text: , 
Deleted Text: Matthews correlation coefficient (
Deleted Text: )
Deleted Text: -
Deleted Text: &hx2009;&hx2265;&hx2009;
Deleted Text: ,
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: area under the ROC curve (
Deleted Text: )
Deleted Text: ,
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty162#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty162#supplementary-data
Deleted Text: &hx2009;&hx002B;&hx2009;
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty162#supplementary-data
Deleted Text: &hx223C;
Deleted Text: &hx223C;
Deleted Text: &hx223C;
Deleted Text: &hx223C;


complementary to each other. Therefore, the SVM model with all

features is finally implemented as the ab initio predictor SVMpred.

3.3 Performance of the proposed methods on the

independent test set
We next assessed the performance of the proposed methods on the

independent test set TE73. The results are shown in Table 1, which

shows that SVMpred achieves satisfactory MCC and AUC, which

are 0.438 and 0.817, respectively. The MCC for TemPred is higher

than that for SVMpred but with lower AUC and AUCL. In addition,

the Pre for SVMpred is 3% higher than TemPred while the Rec for

TemPred is about 18% higher than SVMpred. These data show that

these two methods are complementary and the consensus of them by

CoABind is possible to improve the prediction. This is in fact true as

reflected in Table 1. It shows that CoABind achieves higher values

for all metrics over both methods except for the Pre, which is com-

parable to SVMpred (0.510 versus 0.513).

Statistical tests were performed on the difference between the

methods in Table 1 based on the MCC values, similar to the proced-

ure used in (Meng and Kurgan, 2016; Yan and Kurgan, 2017). We

randomly drew a half number of proteins from the test set TE73 and

then computed their average MCC for each pair of methods. This

experiment was repeated 10 times to generate 10-paired results. The

Anderson–Darling test was first used to test whether the data follow

a normal distribution or not at 0.05 significance level. The paired

t-test is applied for a normal distribution. Otherwise, the nonpara-

metric Wilcoxon signed-rank test is utilized. The P-value returned

from the test indicates the significance level of the difference be-

tween two compared methods. The results for the all-against-all

tests are shown in the Supplementary Table S2 (the data with gray

background). It indicates that TemPred outperforms SVMpred sig-

nificantly at P-value < 10�4, while CoABind outperforms both

SVMpred and TemPred significantly at P-value < 0.01.

Note that the maximum sequence identity between the test and

the training proteins is 25%, which is a global metric. It would be

interesting to measure the similarity with a local metric. To this end,

by searching each test protein against the training set with PSI-

BLAST, we found that there are 41/32 proteins with/without hom-

ologous templates (at e-value � 0.001). Thus, we divided the whole

test set into two subsets TE41 and TE32, on which the methods

were further compared. The comparison results are summarized in

the Supplementary Table S3. For all methods, the predictions for

proteins in TE41 are significantly more accurate than TE32. This is

understandable as both SVMpred and TemPred rely on the local

similarity to the training proteins to make predictions. On both

subsets, SVMpred has lower MCC but higher AUCL values than

TemPred, showing these two methods are complementary again.

From Supplementary Table S3, on the new test set TE32, we can

see that the MCC for TemPred is still satisfactory and higher than

SVMpred (0.32 versus 0.287), though the similarity between TE32

and the training set TR146 is small (both globally and locally). This

is probably because the alignment tool HHsearch (used in TemPred)

is more sensitive than PSI-BLAST (used for defining local similarity

between test and training proteins). When we re-define the local

similarity based on HHsearch, the number of test proteins without

significant local similarity (at e-value � 0.001) to the training pro-

teins was reduced to 12. On these proteins, the average MCCs for

SVMpred, TemPred and CoABind are very low, which are 0.061,

0.044 and 0.084, respectively.

3.4 Case study
We further investigate the relationship between the predictions of

the proposed methods with a specific example. The example protein

is ‘spermidine N-acetyltransferase from Vibrio cholerae in complex

with acetyl-CoA’ (PDB ID: 4R57). There are 26 CoA-binding resi-

dues for the chain A of this protein. SVMpred predicts 24 binding

residues and 23 of them are true positives, resulting to 0.907 MCC.

TemPred predicts 22 binding residues based on 40 homologous tem-

plates. Among the predicted binding residues, 21 and 1 are true posi-

tives and false positives, respectively. This represents to the MCC,

Pre and Rec of 0.859, 0.955 and 0.808, respectively. Further investi-

gation on the predicted binding residues by SVMpred and TemPred

shows that the former has two correctly predicted binding residues

(30Y and 31W) that are missed by the latter (see the Supplementary

Fig. S3 or compare Fig. 3A and B). The consensus of both methods

by CoABind increases the number of true positives to 25, improving

the MCC and recall to 0.933 and 0.962, respectively.

3.5 Comparison with random prediction and S-SITE
Since no specific tool is available for the identification of CoA-

binding residues, the proposed methods are first compared with ran-

dom predictions. By definition, the average MCC and AUC values

for random prediction are around 0 and 0.5, respectively, which are

much worse than the corresponding results of the proposed

methods.

In addition, we compared our methods with COACH, one of the

state-of-the-art general-purpose algorithms for protein-ligand bind-

ing residues prediction (Yang et al., 2013a). The standalone version

of COACH is available in the I-TASSER Suite (Yang et al., 2015).

Here, the S-SITE program was compared because it is the only

sequence-based method in the package and was reported to have

comparable performance to the other two structure-based programs

(TM-SITE and COFACTOR). The same condition was applied

when running S-SITE, i.e. by excluding templates with 25% se-

quence identity to the query sequence. As S-SITE does not differenti-

ate between ligand types, the predictions for ligands of CoA and

CoA-derivatives were used in the comparison.

Figure 4 shows the comparison based on the MCC and AUC val-

ues on the test set TE73. The results for other metrics are available

in the Supplementary Table S4. It shows that the MCC and AUC

Table 1. The predictive quality of the proposed methods on the

independent test set TE73

Methods MCC Pre Rec AUC AUCL R

SVMpred 0.438 0.513 0.453 0.817 0.047 9.067

TemPred 0.481 0.498 0.535 0.794 0.039 7.573

CoABind 0.489 0.510 0.571 0.849 0.055 10.516

The best results are highlighted in bold type.

Fig. 3. An example of the predicted CoA-binding residues by (A) SVMpred,

(B) TemPred, (C) CoABind. The protein structure is shown in gray cartoon.

The ligand structure is shown in magenta ball-and-stick. True positives, false

positives, and false negatives are shown in green, red, and blue cartoon,

respectively

2602 Q.Meng et al.

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/34/15/2598/4934943
by University of Washington user
on 28 July 2018

Deleted Text: <italic>-</italic>
Deleted Text:  
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty162#supplementary-data
Deleted Text: &hx2009;&hx003C;&hx2009;
Deleted Text: &hx2009;&hx003C;&hx2009;
Deleted Text: &hx2009;&hx2264;&hx2009;
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty162#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty162#supplementary-data
Deleted Text: &hx2009;&hx2264;&hx2009;
Deleted Text: &hx2009;
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty162#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty162#supplementary-data
Deleted Text: ,
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty162#supplementary-data


values for the proposed methods are all significantly higher than

S-SITE. Interestingly, the MCC for TemPred is higher than S-SITE

by 21.5%, though both methods make predictions based on

templates. This is probably because S-SITE is a general-purpose

algorithm while TemPred is specially designed for CoA and

CoA-derivatives. Statistical tests were performed to compare the

significance level of the improvement over S-SITE. The P-values

are listed in the Supplementary Table S2 (the data with yellow

background), which are all smaller than 10�4, showing that the

improvements made by the proposed methods over S-SITE are

very significant.

4 Discussion

The performance of the proposed methods may be affected by the

following factors: the template identification algorithm, the enriched

binding annotation, the inclusion of CoA-derivatives, the size of

training set and the random division for training and test sets. As it

is time-consuming to re-train SVMpred, we discuss the influence of

these factors to the method TemPred only.

4.1 Impact of template identification algorithm
We have applied the sequence alignment algorithm HHsearch to

build the TemPred method. We replaced HHsearch by PSI-BLAST

to test the impact of template identification algorithm to TemPred.

Similar to HHsearch, the prediction of binding residues from the

PSI-BLAST search was also based on Equation (1). As PSI-BLAST

does not return the probability value Probj for the jth template, we

calculated it based on the corresponding e-value. It equals to 1 when

the e-value is < 0.001 and 0.001/e-value, otherwise. The results are

shown in the Supplementary Table S5 (the row TemPredP), which

shows that HHsearch can find homologies for 26% more queries

than PSI-BLAST with e-value � 0.001. For all metrics, HHsearch

obtains higher values than PSI-BLAST. The statistical test shows

that HHsearch outperforms PSI-BLAST significantly at P-value <

0�7. These results are in consistent with the fact that HHsearch

is more sensitive for the homology detection (Soding, 2005). We

thus employed HHsearch to develop the template-based method

TemPred.

4.2 Impact of the enriched-binding annotation
When designing the benchmark dataset, we transferred the CoA-

binding residues from identical sequences to enrich experimental

annotations. We test if this transferal contributes to the prediction

accuracy. To this end, we assessed TemPred on the original dataset

without such transferal. The results are listed in the Supplementary

Table S5 (the row TemPred*), which shows that the accuracy for

the dataset with transferal is only slightly higher than the original

dataset. The P-value (0.055) from the statistical test also indicates

that the improvement with transferal of binding annotation is not

significant at significance level of 0.05. There may be two reasons

for this. The first is the number of increased binding annotations

may not be enough (about 14%), as 100% sequence identity has

been required to make the transferal. The second is the number of

proteins used for training is relatively small (146).

4.3 Impact of the CoA-derivatives and training set size
As the total number of CoA-binding proteins is too small, we have

included the CoA-derivatives to enlarge the benchmark dataset.

We tested how much this contributes to the prediction. For com-

parison, we removed the proteins with CoA-derivatives from the

training and the test sets. This results to the new training and test

sets of 80 and 42 proteins, respectively. The TemPred results on

this 42 proteins are available in the Supplementary Table S5 (the

row TemPredT), which are all lower than on TE73. For example,

the MCC is 0.419, which is 14.8% lower than that on TE73. This

suggests that inclusion of related ligand types does contribute to

the prediction accuracy. Another reason for the difference is the

size of training set. For the one with CoA-derivatives, the number

of training proteins is 146, which is 1.8 times of the one without

CoA-derivatives (80).

4.4 Impact of the random division for training and

test sets
As we can see from the data in Figure 2 and Table 1, the MCC for

SVMpred on the training set is lower than the test set (0.392 ver-

sus 0.438). It is also similar for TemPred, which has MCC of

0.447 and 0.481 on the training and test set, respectively. One

question one may come up with is if the test set happens to be eas-

ier than the training set. We tested this by trying 10 more random

divisions of the dataset. For each division, we ran TemPred and

collected the average accuracy. The results over the 10 divisions

are presented in the Supplementary Table S6, which are very simi-

lar to the one presented in Table 1. It shows that the average

MCC on the training sets is lower than the test sets (0.423 versus

0.485). This suggests that the higher accuracy on the test set is not

because the test set is not easier than the training set. Note that

the accuracy on the training set was obtained based on 5-fold

cross validation. As a result, for each protein in the training set,

only 4/5 proteins (i.e. 116) are in the template library. However,

for each protein in the test set, the number of proteins in the tem-

plate library is 146 (i.e. the size of the training set). Therefore, we

conclude that it is because more templates are used for the test set

than for the training set.

5 Conclusions

CoA-protein binding plays an important role in various cellular

functions and metabolic pathways. We have developed three meth-

ods for the prediction of CoA- and CoA derivatives-binding

residues. The first is an accurate template-based method TemPred

by employing the sensitive profile–profile alignment algorithm

HHsearch for template detection. The second is an ab-initio pre-

dictor SVMpred with high predictive quality. The success of

SVMpred is attributed to the design of a comprehensive set of fea-

tures from two sequence profiles and the predicted secondary struc-

ture and solvent accessibility. SVMpred is experimentally shown to

be complementary to TemPred. We thus combined them together

and developed the third consensus-based method CoABind. It

significantly outperforms both SVMpred and TemPred, achieving

MCC and AUC of 0.489 and 0.849, respectively, on an
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Fig. 4. Comparison of the proposed methods with S-SITE on the test set TE73
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independent test set of 73 proteins. Experiments demonstrate that

the proposed methods significantly outperform the state-of-the-art

general-purpose ligand-binding residues prediction algorithm

COACH. A web server implementing the proposed methods is freely

available at: http://yanglab.nankai.edu.cn/CoABind.
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