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ABSTRACT

The construction of consensus genetic maps is a very challenging problem in computational
biology. Many computational approaches have been proposed on the basis of only the
marker order relations provided by a given set of individual genetic maps. In this article, we
propose a comparative approach to constructing consensus genetic maps for a genome,
which further takes into account the order relations from a closely related genome when
resolving ordering conflicts among individual genetic maps. It aims to retain as many order
relations as possible from individual genetic maps while achieving the minimum re-
arrangement distance to the reference genome. We implement the proposed approach as an
integer linear program and test it on both simulated and real biological datasets. The
experimental results show that it is capable of constructing more accurate consensus genetic
maps than the most recent approach called MergeMap.

Key words: breakpoint distance, comparative genomics, consensus genetic map, integer linear

programming.

1. INTRODUCTION

In recent years, the rapid adoption of high-throughput genotyping technologies such as recombination

analysis and physical imaging makes multiple genetic maps available for a same species. Combining these

maps into a consensus genetic map allows us to produce a higher density of markers and therefore a greater

genome coverage than any individual genetic map. However, there often exist order conflicts among these

individual genetic maps, mostly due to experimental errors. Constructing consensus genetic maps is thus a

very challenging task in computational biology.

Many computational approaches have been proposed in the literature to construct consensus genetic

maps. For example, the software JoinMap implemented a statistical approach based on data pooling (Stam,

1993; Jansen et al., 2001). It first estimates pairwise marker distances by weighted least squares and then

performs a numerical search for the best fitting orders of markers. Yap et al. (2003) proposed a graph-

theoretic model, which represents individual genetic maps as directed acyclic graphs (DAGs) and merges

them into a single directed graph. A directed cycle in the resulting graph hence indicates an ordering

conflict among the individual genetic maps. In order to resolve ordering conflicts, Jackson et al. (2005,

2008) proposed to break the cycles by removing a minimum weighted set of feedback edges, while
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Wu et al. (2008a,b) adopt a better strategy which aims to remove a minimum weighted set of feedback

marker occurrences from the individual genetic maps to be combined.

Observe that all the preceding approaches rely solely on the mapping information provided by a given set

of individual genetic maps for a species. In this article, we propose a comparative approach to constructing

consensus genetic maps, which further takes into account the order relations from a closely-related species

whose markers are already in total order. Through a comparative analysis we might be able to identify

erroneous orders among the set of conflicting orders in a biologically meaningful way, which is often seen

impossible with the individual genetic maps alone. Hence, our proposed approach is particularly aimed at

finding a consensus genetic map for a species, which retains as many order relations as possible from an

input set of individual genetic maps, while achieving the lowest possible rearrangement distance to a

closely-related species whose marker orders are already fully identified.

There have been quite a few comparative studies conducted for genetic maps. For example, Zheng et al.

(2005) presented the first study on the problem of computing the rearrangement distance between con-

sensus genetic maps of two related species. Blin et al. (2007) studied a restricted version of this problem

where one of the maps is given in a total order of markers. More algorithmic studies on both problems have

also been conducted (Chen and Cui, 2009; Fu and Jiang, 2007). In another study by Zheng et al. (2007), a

comparative approach was proposed to reconstruct synteny blocks between two genetic maps by elimi-

nating as few noisy markers as possible. The most recent study, and also most related to our present study,

refines genetic maps by accounting for the phylogenetic information of a species tree (Bertrand et al., 2008,

2009). It aims to resolve as many incompatible marker pairs as possible, but may not end up with a conflict-

free genetic map. Note that unlike our present study none of them are devoted to constructing consensus

genetic maps.

The rest of the article is organized as follows. We first introduce some preliminary facts and definitions

in Section 2. Our proposed approach to constructing consensus genetic maps is presented in Section 3, and

its ILP formulations are developed in Section 4. Section 5 presents the experimental results on both

simulated and real biological data. Finally, some concluding remarks are made in Section 6. For the sake of

consistency, we borrowed many notations from Fu and Jiang (2007) and Wu et al. (2008b) throughout the

article.

2. PRELIMINARIES

2.1. Individual genetic maps

An individual genetic map is a linear sequence of bins, each of which may contain one or several genetic

markers. It is generated from a single mapping study and defines a partial order on markers of a chro-

mosome. Markers from different bins are ordered by their respective bins, but for markers in the same bin

their relative orders are undetermined. Consider, for example, the genetic map 2 {5 6} 4 3, where a curly

bracket encloses two markers from a same bin. Both markers 5 and 6 are ordered immediately after marker

2, but no relative order is provided between markers 5 and 6. A genetic map is often modelled as a so-called

map graph, that is, a directed acyclic graph (DAG) whose vertices represent markers and edges connect

markers only from adjacent bins (Yap et al., 2003). See Figure 1 for the map graph of the above-mentioned

genetic map. Note that two markers are ordered in an individual genetic map if and only if there is a

directed path between them in the corresponding map graph. We denote an individual genetic map by P,

which, without ambiguity, refers to both a linear sequence of bins and its DAG representation (i.e., the map

graph). The set of markers in P is further denoted by VP, and the set of edges by EP.

When a chromosome has multiple genetic maps available from different mapping studies, one might be

able to determine relative orders for more marker pairs through map integration. To this end, a directed

weighted graph (DWG), termed aggregate graph, is often used to present all the possible (not necessarily

consistent) marker orders. It is commonly constructed by taking the set union of markers and edges from all

the individual genetic maps and weighting each edge by the number of times it appears in the individual

genetic maps to be combined. As in map graphs, two markers are deemed to be ordered if and only if there

is a directed path connecting them in the aggregate graph. However, there might exist order conflicts

between individual maps, each giving rise to a directed cycle in the aggregate graph. For example, the

chromosome O in Figure 1 has two individual genetic maps P1 andP2, which we denote by O¼ {P1,P2}.

Its DWG representation (i.e., the aggregate graph), also denoted by O, contains a cycle between markers
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4 and 5, indicating an order conflict between these two markers—marker 4 precedes marker 5 in the map

P1 but succeeds it in the other map P2.

2.2. Consensus genetic maps

The primary purpose of integrating multiple genetic maps is to resolve order conflicts between individual

maps and derive additional inferences about marker orders. The end result of a map integration exercise is

typically called a consensus genetic map. It defines a partial order on markers with higher coverage and

accuracy than any component individual genetic map ( Jackson et al., 2005; Yap et al., 2003). Like an

individual genetic map, a consensus genetic map can also be modelled as a directed acyclic graph, but often

requiring a general graphical structure. In comparison, the DAG representation of an individual genetic

map has a much simpler graphical structure because unordered markers are limited to the same bin. Many

approaches for map integration have been proposed in the literature, and vary mainly in the objective

function to be optimized for computing a consensus genetic map. A commonly used approach is to find a

consensus genetic map that is an acyclic subgraph induced from the aggregate graph by removing the

smallest set of edges called the minimum feedback edge set (Fig. 2).

In practice, geneticists are used to working with genetic maps that are in a linear order of marker bins,

and often find consensus genetic maps too complex to be convenient for many subsequent genetic analyses

such as rearrangement analysis (Wu et al., 2008b; Yap et al., 2003). Therefore, it is desirable to impose

some restrictions on the graphical structure of consensus genetic maps. In this study, a consensus genetic

map refers to particularly a linear sequence of bins of markers in which an unordered pair of markers occurs

only in the same bin, just as seen in an individual genetic map. Note that this might be the graphical

structure that can closest represent the true map, if not a total order.
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FIG. 1. An illustrative example

of constructing consensus genetic

maps in comparative analysis.
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with the input aggregate graph O.
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2.3. Rearrangement distances between partially ordered genomes

In comparative genomics studies, the breakpoint distance and the reversal distance are commonly used

as the evolutionary distance between two genomes. They were initially defined on two genomes in the total

order, and recently generalized to two partially ordered genomes by introducing the concept of linearization

(Fu and Jiang, 2007). A linearization of a partially-ordered genome P is a topological sort that represents a

possible total order of all markers in P. Let L(P) be the set of all possible linearizations of P.

Given two partially ordered genomes P and G that have the same content of markers, their breakpoint

distance and reversal distance, denoted, respectively, by db(P, G) and dr(P, G), are then defined (Fu and

Jiang, 2007) as

db(P,C)¼ min
p2L(P), c2L(C)

db(p, c),

and

dr(P,C)¼ min
p2L(P), c2L(C)

dr(p, c),

where db(p, g) and dr(p, g) denote the breakpoint distance and the reversal distance between two permu-

tations p and g, respectively. For example, ifP¼ 1 2 3 4 5 {6 7} and G¼ {1 2} 6 5 4 3 7, then db(P, G)¼ 2

while dr(P, G)¼ 1.

2.4. Common adjacencies of two genomes

Given two genomes in the total order, we already know that a breakpoint refers to two markers that are

adjacent in one genome but not in another. If two markers are adjacent in both genomes, we will say that

they form a common adjacency. An important observation is that, for either genome, the number of

breakpoints (i.e., the breakpoint distance) plus the number of common adjacencies is one less than the size

of the genome. As a result, in computing the breakpoint distance between two partially-ordered genomes,

finding two respective linearizations (e.g., p and g in the above definition) that minimize the number of

breakpoints is equivalent to finding two linearizations that maximize the number of common adjacencies.

Given two partially-ordered genomes P and G, two markers are said to be a possible common adjacency

if they could appear as a common adjacency in some pair of respective linearizations of P and G (Fu and

Jiang, 2007). Note that all the possible common adjacencies may not coexist in any fixed pair of respective

linearizations. For example, there are five possible common adjacencies betweenP¼ {1 2} 4 {3 5 6} 7 and

G¼ 1 2 3 4 5 6 7; they are h1, 2i, h3, 4i, h4, 5i, h5, 6i and h6, 7i. However, the maximum number of

common adjacencies that could exist between a pair of two respective linearizations of P and G is only

four.

3. METHODOLOGY

Given a set of K individual genetic maps, X¼fP1,P2, � � � ,PKg and another reference map G in the

total order, we aim to find a consensus genetic map that retains the order relations of a maximum weighted

acyclic subgraph induced from the aggregate graph O while minimizing its rearrangement distance to the

reference map G. To avoid the inclusion of any spurious order, we hence require that all the order relations

in the final consensus genetic map be either (i) implied by the aggregate graph, (ii) needed to minimize the

rearrangement distance in comparative analysis, or (iii) imposed due to the restrictions on the graphical

structure of a consensus genetic map (i.e., a linear order of marker bins). In other words, the consensus

genetic map shall not include any spurious order relations without supportive evidence. Formally, the new

problem is defined as follows:

Input: A set of K individual genetic maps X¼fP1,P2, � � � ,PKg and a reference genome G in total

order.

Output: A consensus genetic map in linear order of marker bins which (i) respects the order relations of

a maximum weighted acyclic subgraph of O, and (ii) achieves the lowest possible rearrangement distance

to the reference genome G.
An illustrative example is given in Figure 1, where the genome O has two individual genetic maps,

P1¼ 2 {5 6} 4 3 and P2¼ 1 6 4 {5 7}. The aggregate graph of O is then constructed by combining the two
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individual maps. The directed cycle in O between the markers 4 and 5 indicates an order conflict which

needs to be resolved. With comparison to a totally-ordered genome G which is given as the identity

permutation, the rearrangement distance is minimized only when marker 4 is ordered immediately after

marker 5 in the final consensus genetic map. In particular, if the breakpoint distance is considered, the

consensus genetic map Ob(G) in Figure 1 will be returned, where all the order relations are supported with

evidence. For example, marker 7 can only be ordered after marker 3 because the later marker needs to

immediately follow marker 4 for the breakpoint distance to be minimized. On the other hand, marker 1 and

marker 2 remain incomparable since both orderings between them lead to the same breakpoint distance

between Ob(G) and G. If the reversal distance is instead considered, the order between marker 1 and marker

2 can be resolved in the resulting consensus genetic map Or(G) (Fig. 1). In general, Or(G) further refines
Ob(G) with more incomparable orders resolved.

Observe from the above example that comparative analysis can not only contribute to inferring new

orders, but also to resolving order conflicts among individual genetic maps. It is such a comparative context

that distinguishes our present study from all the previous studies on the construction of consensus genetic

maps ( Jansen et al., 2001; Jackson et al., 2005, 2008; Wu et al., 2008a,b) or on the linearization of partially-

ordered genetic maps (Zheng et al., 2005; Zheng and Sankoff, 2006; Blin et al., 2007; Fu and Jiang, 2007;

Chen and Cui, 2009).

4. ALGORITHMS

To follow the proposed methodology closely, we adopt an approach that starts with finding all the

maximum weighted acyclic subgraphs of O. Among these maximum weighted acyclic subgraphs, we

then choose the one that attains the minimum rearrangement distance to the reference map G and refine

it to produce a consensus genetic map (in linear order of marker bins). For example, the genome O
in Figure 1 has two acyclic subgraphs with the maximum weight; they are A(O)1 and A(O)2 as shown
in Figure 2. Their breakpoint distances to the reference map G are respectively 1 and 2. Therefore,

A(O)1 is chosen rather than A(O)2. In the second refinement step, we place marker 5 between marker

6 and marker 4 and also marker 3 between marker 4 and marker 7, since they are necessary to ensure

the minimum breakpoint distance between A(O)1 and G. Consequently, Ob(G) of Figure 1 is returned

as the consensus genetic map. If the reversal distance is considered instead of the breakpoint distance,

we will further place marker 1 before marker 2 to obtain Or(G) of Figure 1 as the final consensus

genetic map.

An alternative way to implement the second refinement step is as follows. First, we linearize the selected

acyclic subgraph A(O)1 into a total order, and then remove from this total order all the spurious orders (i.e.,

those orders without any evidence support from the mapping study or comparative study) by merging

neighboring marks into bins. For example, if A(O)1 is linearized into L(A(O)1) by minimizing the break-

point distance to G (Fig. 2), then we shall regard the relative order between marker 1 and marker 2 as

spurious. In this case, we will merge them into the same bin.

Note that finding even one maximum weighted acyclic subgraph of O is already hard in general, since it

is essentially equivalent to the NP-hard problem of minimum weighted feedback edge set (Garey and

Johnson, 1979). Therefore, we do not expect an efficient algorithm that can construct an optimal consensus

genetic map by following our proposed approach. Instead, we formulate below two integer linear pro-

gramming (ILP) models, one in polynomial size and the other in linear size, in order to take advantage of

the existing powerful solvers for ILP problems, such as IBM ILOG CPLEX.

4.1. A polynomial-sized ILP formulation

Let f1, 2, � � � , ng be the marker set of the genome X¼fP1,P2, � � � ,PKg. To simplify the exposition

and without loss of generality, we assume that the reference genome G is the identity permutation; that is,

C¼ 1 2 � � � n. As such, a common adjacency of O and G can only be a pair of two markers with

consecutive indices, i.e., i and iþ 1, where 1� i� n� 1.

Observe that a maximal subset of markers whose orders are pairwise conflicting comprises a strongly

connected component (SCC) of the directed graph O—that is, a maximal subgraph in which each vertex has

a directed path to every other vertex. If we shrink every SCC down to a single vertex and draw an arc
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between two of them if there is an arc from some vertex in the first to some vertex in the second, the

resulting graph would be a directed acyclic graph and hence can be topologically sorted. A number of very

efficient algorithms are able to find the SCCs in a directed graph in linear time, such as Tarjan’s algorithm

(Tarjan, 1972) which is based on depth-first search. We implemented Tarjan’s algorithm to facilitate our

ILP formulation below.

Before presenting our ILP formulation, we build the following nine subsets comprising of pairs of

distinct markers. An ordered pair of distinct markers hi, ji is in the subset

� P11 if (a) there exists an arc from marker i to marker j in every individual genetic map Pi, for all

1� i�K, and (b) either j¼ iþ 1 or i¼ jþ 1;
� P12 if (a) there exists an arc from marker i to marker j in every individual genetic map Pi, for all

1� i�K, and (b) both i and j are the only makers in their respective bins in every individual genetic

map Pi, for all 1� i�K;
� P1 if hi, ji is in either the subset P11 or the subset P12 (that is, P1 ¼P11

UP12);
� P21 if (a) hi, ji is not in the subset P1, and (b) there exists a directed path from marker i to marker j in

every individual genetic map Pi, for all 1� i�K;
� P22 if (a) hi, ji is not in the subset P1, (b) i and j belong to different SCCs of O, and (c) there exists a

directed path from marker i to marker j in O;
� P2 if hi, ji is in either the subset P21 or the subset P22 (that is, P2 ¼P21

UP22);
� P3 if (a) hi, ji is not in either of P1 or P21, (b) i and j belong to the same SCC, and (c) there exists an

arc from marker i to marker j in O;
� P4 if (a) i< j, and (b) neither hi, ji nor hj, ii exists in either of P1 P2 or P3;
� O if (a) j¼ iþ 1, (b) hi, ji is not in the subset P1, and (c) there does not exist in O a directed path from

marker i to marker j or from marker j to marker i which passes through a vertex belonging to a SCC

different from the SCCs containing i or j.

Consider the genome O given in Figure 1. There is only one SCC containing more than two vertices, and

the elements contained in the nine subsets are listed below.

P1 ¼P11 ¼P12 ¼;,
P21 ¼fh6, 4ig,
P22 ¼fh1, 3i, h1, 4i, h1, 5i, h1, 6i, h1, 7i, h2, 3i, h2, 4i, h2, 5i, h2, 6i,

h2, 7i, h4, 3i, h4, 7i, h5, 3i, h5, 7i, h6, 3i, h6, 4i, h6, 5i, h6, 7ig,
P2 ¼P22,

P3 ¼fh4, 5i, h5, 4ig,
P4 ¼fh1, 2i, h3, 7ig,
O¼fh1, 2i, h3, 4i, h4, 5i, h5, 6ig:

Note that h6, 4i is not included into the subset P1 because it does not satisfy the second condition used to

define either P11 or P12.

The marker pairs contained in P11 are adjacent not only in all the individual genetic maps but also in the

reference genome G. Meanwhile, all the individual maps have identified for each pair a consistent ordering.

Therefore, it is desirable to retain both of their adjacencies and order relations in the final consensus genetic

map to be constructed. The marker pairs in P12 hold all the above properties except that they may not be

adjacent in the reference genome G. However, all the markers involved are additionally required to be the

only markers in their respective bins, which enables their adjacencies and order relations to be preserved in

the final consensus genetic map without losing optimality. For the marker pairs in P2, since the order

relations from P21 are consistent across all the individual genetic maps and those from P22 are not involved

in any order conflict, we will retain only their order relations (not necessarily being adjacent) in the final

consensus genetic map. The subset P3 instead consists of those marker pairs with conflicting orders, which

need to be resolved. P4 contains marker pairs unordered by O (i.e., there does not exist in O a directed path

from one marker to another). Lastly, the subset O consists of all the possible common adjacencies between

O and G. Note that although both P1 and P21 are likely to contain a pair hi, ji of two markers belonging to

the same SCC of O so that their order is indeed in conflict, we still choose to order i before j in the final
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consensus genetic map because this order is already convinced by all the individual genetic maps under

consideration.

Further notice that the size of P3 can never exceed the total number of arcs in O. The union

P1

SP2

SP3

SP4 contains at least one ordered pair of either hi, ji or hj, ii, for all the distinct markers

i and j. The subset O might overlap with any of the subsets P2, P3 and P4. As illustrated in the aggregate

graph of O in Figure 1, each pair hi, ji in P3 is associated with a weight value wij, which will be used in our

ILP formulations below.

Our first ILP formulation, presented on the left of Figure 3, is able to construct an optimal consensus

genetic map in total order. In this formulation, xi is an integer variable defining the relative position of

marker i in the final consensus genetic map to be constructed, yij is a binary variable indicating whether

marker i is ordered before marker j, and zi is also a binary variable but indicating whether marker i and

marker iþ 1 are consecutive in the final consensus genetic map. Below, we briefly discuss the constraints

and the objective function.

� Constraint (C.1) ensures that the final consensus genetic map retains those common adjacencies

convinced by all the input individual genetic maps and by the reference genome as well.
� Constraint (C.2), together with Constraint (C.1), ensures that the final consensus genetic map retains all

the orders that are already resolved by the input individual genetic maps.
� Constraints (C.3) and (C.4) ensure that all the unresolved orders, including the order-conflicting pairs

in P3 and the unordered pairs in P4, are to be resolved in the final consensus genetic map. Note that

yij¼ 1 if and only if marker i is ordered before j.
� Constraints (C.5) and (C.6) ensure that zi¼ 1 if and only if hi, iþ 1i is an adjacency pair in the final

consensus genetic map. For an adjacency pair hi, iþ 1i, marker i is located either immediately before

marker iþ 1 or immediately after marker iþ 1.
� The objective function consists of two sums. Maximizing the first sum finds an acyclic subgraph of O
with the maximum weight, while maximizing the second sum retains the maximum number of

common adjacencies in the resulting consensus genetic map, or equivalently, minimizes the breakpoint

distance to the reference genome G. The coefficient n used in the first sum ensures the maximum

weighted acyclic subgraph to be found, since the second sum would not yield a value greater than n.

Although we have made efforts to reduce the numbers of variables and constraints in the above ILP

formulation, there exist O(n2) variables and O(n2) constraints in general. It could inadvertently result in a

very time-consuming computation. Therefore, this formulation should be intended only for genetic maps of

small size.

FIG. 3. Two integer linear programming formulations with O(n2) and O(n) variables, respectively, where n denotes

the total number of markers.

CONSTRUCTING CONSENSUS GENETIC MAPS 1567



4.2. A linear-sized ILP formulation

The primary determinant of computational difficulty for an ILP problem is the number of in-

teger variables rather than the number of constraints. In order to find an approach computation-

ally feasible for genomes of moderately large size (e.g., having about 1000 markers), it is desirable

to have an ILP formulation for which the number of variables scales linearly with the number of

markers. To this end, we present here an alternative approach which is based on a slightly different

objective.

The previous approach aims to find a consensus genetic map at the minimum breakpoint distance to a

given reference genome, i.e., minimizing the number of breakpoints, or equivalently, maximizing the

number of common adjacencies between a linearization of O and the reference genome G. The new

approach instead aims to find a consensus genetic map (denoted by Ob0(G)) that maximizes its total number

of possible common adjacencies with the reference genome G. Note that these possible common adja-

cencies occur in both the consensus genetic map Ob0(G) and the reference genome G, but may not nec-

essarily occur simultaneously in any fixed linearization of Ob0(G).
As the number of markers in each bin of an individual genetic map is usually upper bounded by a

constant for a genetic mapping dataset, the aggregate graph O hence contains only O(n) arcs such that the

size of P3 is within O(n). With the new approach above we are able to formulate an ILP model that

involves only O(n) variables. As seen in Figure 3 on the right, the new formulation involves n variables

xi, O(n) variables yij and at most (n� 1) variables zi. It differs from the previous formulation mainly in

the constraints (C.3) and (C.4), where the subset P4 is removed. If we solve for the aggregate graph O
given in Figure 1 with the new ILP formulation, the resulting consensus genetic map would be Ob0(G) as
shown in Figure 2. Although the comparison with the reference genome G suggests that the marker 5

shall be ordered immediately after the marker 6, Ob0(G) unfortunately did not determine their relative

order.

To solve an ILP problem, we employ a high-performance mathematical programming engine IBM ILOG

CPLEX 12.1, which is available at www-01.ibm.com/software/integration/optimization/cplex/. It imple-

ments a branch-and-bound search with advanced algorithmic features such as cuts and heuristics, and is

particularly suitable for solving the ILP problems with sparse coefficient constraint matrices; that is, the

percentage of variables per constraint that have nonzero coefficients is quite low. Apparently, this kind of

sparsity is common to the ILP problems which we formulated above for constructing consensus genetic

maps, because each constraint involves at most three variables. For example, given a genome consisting of

1000 markers, the percentage of variables per constraint that have nonzero coefficients is often less than

0.2% (as would be seen in the simulation tests below).

5. EXPERIMENTAL RESULTS

We implemented our algorithm in Cþþ and carried out performance tests on both simulated data and

real biological data. The implemented software, called ILPMap, is freely available at www1.spms.ntu

.edu.sg/*chenxin/ILPMap/. In our experiments below, ILPMap was run on a Windows XP desktop PC

with a 3.2GHz Intel Pentium processor and 3.5GB RAM, and MergeMap instead through its web server at

http://138.23.191.145/mgmap/.

5.1. Simulated data

The purpose of this set of experiments is to assess the effectiveness of our proposed approach on

constructing consensus genetic maps under comparative analysis. The simulated data is generated as

follows. Start from a genome G, which is simply given as an identity permutation of n distinct markers.

Perform g reversals on the genome G to obtain the true map (in total order) of the second genome O.
The boundaries of these reversals are uniformly distributed within the range of the genome. To

generate an individual genetic map for the genome O, we follow a similar procedure previously

proposed in (Wu et al., 2008b). It first swaps a randomly chosen adjacent pairs, and then relocate b
randomly chosen markers to a random position. The a swaps are intended to mimic local reshuffles

while the b relocations are intended to mimic global displacements. They are two types of errors

commonly seen in an individual genetic map, and the latter type of errors occur much less frequently
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than the former in practice. In our simulation experiments, we generate two individual genetic maps for

each genome O, and try to construct a consensus genetic map with comparison to the second genome G.
Therefore, the quadruple (n, g, a, b) specifies the parameters used to generate an individual genetic map

for the genome O.
As we mentioned earlier, the proposed algorithm based on the ILP formulation may inadvertently run in

exponential time in the worst case, especially when there are many global displacement errors occurring in

individual genetic maps and/or there are a large number of distinct markers. Therefore, we create the

simulated datasets for the following ten specifications of parameter values of the quadruple (n, g, a, b):
(100, 6, 6, 1), (100, 8, 8, 2), (300, 10, 12, 3), (300, 14, 16, 4), (500, 16, 20, 5), (500, 22, 28, 6), (800, 24, 32,

7), (800, 28, 36, 8), (1000, 30, 40, 9), and (1000, 36, 50, 10). Note that, up to 1000 distinct markers can be

permitted in a simulated genome, which suffices to model genetic maps of moderately large size. Moreover,

ten global displacement errors can occur in an individual genetic map, which means that there can be up to

twenty global displacement errors occurring in two randomly generated individual genetic maps. In ad-

dition to a large number of local reshuffle errors being permitted, a wide range of genetic maps—from high-

quality to medium-quality and/or from small size to moderately large size—can all be reasonably well

modelled. For each specification of parameter values, twenty random instances are generated in our

experimental tests.

We apply both ILPMap (which implements our linear-sized ILP formulation) and MergeMap to each

experimental simulated dataset, and the resulting consensus genetic maps for the genome O are compared

with its true map to count the number of erroneous marker pairs. We call a pair of markers erroneous when

their relative order in the consensus genetic map differs from the order in the true map (Wu et al., 2008b). If

a pair of markers is placed into the same bin in the consensus genetic map, which means that their relative

order is not determined yet, they are also considered as an erroneous pair but with a weight of 0.5 rather

than the usual weight of 1. When the consensus genetic map is identical to the true map, the number of

erroneous marker pairs is zero. On the contrary, when the consensus map is the reverse of the true map, the

number of erroneous markers will be the largest possible, that is, n(n� 1)/2. For each experiment that is

carried out on twenty data instances generated with one specification of parameter values, we collect the

number of erroneous marker pairs, and calculate both the mean and standard deviation. The resulting

statistics are listed in Table 1.

As can be seen in Table 1, ILPMap performs considerably better than MergeMap in terms of the

average number of erroneous marker pairs per experiment. In all the ten experiments, the consensus genetic

maps found by ILPMap contain erroneous marker pairs on average from two to four times fewer than those

found by MergeMap. To be more specific, ILPMap successfully finds more accurate consensus genetic

maps than MergeMap in 193 (96.5%) out of the 200 tested instances.

Table 1. Comparison Between ILPMap and MergeMap for Various

Parameter Specifications of (n, g, a, b)

(n, g, a, b)
MergeMap

erroneous pairs

ILPMap

erroneous pairs

Running

time Variables Constraints

(100, 6, 6, 1) 32.5 (22.7) 7.2 (14.7) 0.2 (0.0) 157.5 (7.3) 4991.4 (19.7)

(100, 8, 8, 2) 65.5 (31.9) 27.2 (28.6) 0.2 (0.1) 176.2 (8.8) 4967.4 (39.3)

(300, 10, 12, 3) 298.6 (141.5) 72.0 (107.9) 2.5 (0.3) 431.8 (12.4) 44516.4 (196.8)

(300, 14, 16, 4) 355.4 (103.0) 135.0 (134.7) 2.8 (0.4) 471.6 (7.8) 44432.7 (192.6)

(500, 16, 20, 5) 912.1 (212.2) 328.8 (231.8) 12.4 (1.3) 730.1 (10.0) 123414.3 (308.2)

(500, 22, 28, 6) 1025.2 (318.5) 352.6 (305.3) 13.6 (1.7) 795.2 (15.6) 123214.1 (421.2)

(800, 24, 32, 7) 1842.7 (488.7) 758.3 (403.9) 49.4 (3.8) 1155.5 (14.7) 316604.8 (937.8)

(800, 28, 36, 8) 2151.9 (553.4) 1080.8 (561.3) 50.3 (4.1) 1200.3 (17.8) 316001.8 (839.4)

(1000, 30, 40, 9) 2933.6 (643.4) 1606.7 (909.6) 96.3 (5.6) 1448.1 (19.5) 494455.3 (802.0)

(1000, 36, 50, 10) 3485.5 (836.8) 1743.4 (828.2) 100.8 (8.0) 1527.1 (29.0) 493953.2 (1262.8)

The columns under ‘‘erroneous pairs’’ indicate the average number of erroneous marker pairs obtained from twenty independent

data sets for each parameter specification. The columns under ‘‘running time,’’ ‘‘variables,’’ and ‘‘constraints’’ indicate, for ILPMap

only, the average running time in seconds, the average number of variables, and the average number of constraints present in the ILP

formulations, respectively. The corresponding standard deviations are reported in parentheses.
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Although we expect that ILPMap would run very slow for some datasets, it is surprisingly very efficient

in practical use. For the 200 tested data instances, none takes ILPMap more than 115 seconds to find the

optimal consensus genetic map. As can be seen from Table 1, for example, the average running time for the

data instances generated with the parameter specification (1000, 36, 50, 10) is about 100.8 seconds only.

Another interesting observation is that the standard deviations of the running time are consistently very

small relative to their corresponding average values, which shows the superior effectiveness of our ILP

formulation. Because we ran MergeMap through its web server we are not able to collect its running time

for comparison.

It is also evident from Table 1 that the number of variables employed in an ILP formulation scales quite

linearly with the total number of markers n, thereby verifying the assumption that we previously made for

the linear-sized ILP formulation. However, it is not the case for the number of constraints, which instead

seems to grow quadratically with n. Recall that the primary determinant of computational difficulty for an

ILP problem is the number of integer variables rather than the number of constraints, which may explain

why we do not see the running of ILPMap become drastically slow as the number of constraints grow

quadratically.

Besides the time efficiency, we also find that ILPMap is memory efficient in these simulation tests.

Although our desktop PC that runs ILPMap has as large as 3.5GB of main memory, the peak memory

usage, including the amount of memory consumed by the operating system, is about 0.8GB only.

5.2. Real data

We illustrate the application of our method to a real biological dataset which appeared in a previous

study (Zheng et al., 2005). It contains four individual genetic maps taken from the Gramene database

(www.gramene.org/), two of which are generated for chromosome 3 of maize and the other two for the

chromosome labelled A and LG-03, respectively, of sorghum. There exist two order conflicts between the

two genetic maps of sorghum, involving the markers umc5 versus rz244 and cdo920. To obtain a conflict-

free genetic map of sorghum, Zheng et al. (2005) took a simple approach by which all the conflicting order

relations are removed so that all the involved markers become incomparable. For the validation purpose,

we assume the linear order of the sorghum chromosome found by the previous study of Zheng et al. (2005)

to be true.

Here we run ILPMap on the two individual genetic maps of sorghum to resolve order conflicts, for which

the totally-ordered chromosome 3 of maize presented in Zheng et al. (2005) was used as the reference

genome for comparative analysis (Fig. 4). It is very interesting to see that the resulting consensus genetic

map of sorghum is identical to the one obtained in the study of Zheng et al. (2005). Note that the approach

used in Zheng et al. (2005) to derive a total order is based on computing the minimum reversal distance

between two input partial orders that are assumed to be conflict-free. In comparison, our approach allows

order conflicts to be present among the input individual genetic maps, and then can resolve them suc-

cessfully. Therefore, our proposed approach shows wider applicability than the approach used in Zheng

et al. (2005).

We further run MergeMap on the above same data set, and obtain a consensus genetic map which is also

depicted in Figure 4. Observe that MergeMap is not able to resolve the order conflicts correctly as the

marker rz995 is wrongly placed after the marker umc5. Moreover, it introduces many incorrect order

relations for markers that are actually not involved in any order conflicts among the input individual genetic

maps. For instance, it orders the marker csu690 (i.e., marker 12) before the marker bcd738 (i.e., marker 13),

but they have a reverse order as determined by the previous study of Zheng et al. (2005) (and by our

approach ILPMap too). Recall that the main distinguishing feature of ILPMap is its comparative analysis

framework. Therefore, the above experimental results indicate that comparative analysis has been very

helpful in constructing more accurate consensus genetic maps.

6. CONCLUSION

In this article we presented a comparative approach to constructing consensus genetic maps, which is

based not only on marker order relations available in a given set of individual genetic maps of a species but

also on marker order relations from a closely related species. It aims to find a consensus genetic map which
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retains as many order relations as possible from the input individual genetic maps while minimizing the

rearrangement distance to the second reference genome whose markers are already known in total order. To

this end, we implemented a polynomial-sized ILP formulation to compute the optimal consensus genetic

map, and also a linear-size ILP formulation to compute a (sub-)optimal consensus genetic map at a reduced

computational cost. Our preliminary experiments on simulated and real data have demonstrated that our

approach performs very well on both resolving order conflicts and linearizing partial orders.

In our experimental studies, ILPMap was compared to the most recent approach MergeMap for the

construction of consensus genetic maps. However, the following two factors might have biased the results

against MergeMap. First, ILPMap took advantage of a reference genome but MergeMap did not. It may

make a comparison unfair for MergeMap. Therefore, the superiority of ILPMap over MergeMap shall be

interpreted only as the utility of comparative analysis in improving the construction of consensus genetic

maps. Second, the ground truth is unknown about the true genetic map of sorghum in the real data test. It

turns out that the consensus genetic map found by MergeMap could still be true, although it is neither

consistent with the one previously constructed in the study of Zheng et al. (2005) nor evidenced by a

phylogenetically-related genome under comparative analysis.

Comparative analysis is known to provide profound insights into the genome structure and organization.

To make such an analysis successful, an appropriate choice of the model organism as reference plays a very

important role. The general principle is to choose one that is phylogenetically as close as possible to the

organism under investigation. To apply this principle, our comparative approach to constructing consensus

genetic maps shall not be an exception.

The major limitation of our ILP-based algorithm is its exponential running time in the worst case,

although this is not observed in our simulation tests. Therefore, ILPMap is well suited for solving
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FIG. 4. (a) An individual genetic

map of sorghum (labeled Paterson

2003). (b) The second individual

genetic map of sorghum (labeled

Klein 2004). (c) The combined DG

of the two preceding individual

genetic maps of sorghum. (d) The

total order of chromosome 3 of

maize presented in Zheng et al.

(2005). (e) The consensus genetic

map of sorghum constructed by

ILPMap. (f) The consensus genetic

map constructed by MergeMap.

The corresponding marker names

can be found in Zheng et al. (2005),

for example, the numbers 4, 5, and

23 denote the markers rz244, umc5,

and cdo920, respectively.
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problems of small or medium sizes only. In fact, such a limitation is commonly expected for any

algorithm attempting to solve an NP-hard problem exactly, unless P¼NP. To overcome this limitation,

we may employ a heuristic procedure, probably in the same way as in all the previous studies

( Jackson et al., 2005, 2008; Wu et al., 2008b), to break a problem of large size into several sub-

problems of small size such that every subproblem can be solved with our ILP-based algorithm in an

acceptable amount of time. In the future, we plan to look into developing an efficient (e.g., approximate

or fixed-parameter tractable) algorithm to construct very accurate consensus genetic maps under

comparative analysis.
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