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Supplementary Materials 

Text 1. Oligomeric state inference of different methods 

Text 1.1 Parameter determination of POST 

To determine the optimal weights in Equation (2), we empirically defined a range of values for each 

parameter, as shown in Table S7. Due to the large search space (~18,000 possible combinations), 15 grid 

points were randomly selected for optimization. The optimal weight combination was chosen as the grid 

point that resulted in the lowest average cross-entropy loss on the training set, as depicted in Figure S3A. 

In the final predictions, a probability threshold of 0.2 is applied to maximize the F1-score on the training 

set.  

 

Text 1.2 Oligomeric state inference of individual methods 

For each individual method, the putative templates are used to infer the oligomeric state. We first calculate 

the score for assigning state k according to the following formula 
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where sXX
k, nXX

k are the maximum score and the total number of templates with oligomeric state k from 

POST-XX, respectively. N is the total number of used templates. In the training set, we determined that a 

and b are 7.5 and 3.5 for POST-DP, 7.5 and 3.5 for POST-PL, 8.5 and 5.5 for POST-HH, respectively 

(Figure S3B-D). Next, the probability of each state is calculated by exponentiating the scores and 

normalizing them by the sum of all exponents. Finally, the states with probability higher than a threshold 

(e.g., 0.15 for POST-DP, 0.2 for POST-HH, and 0.15 for POST-PL) are considered the predicted states. 

 

Text 1.3 Oligomeric state inference of combining methods 

To investigate the performance of different combinations of the methods POST-DP, POST-PL, and POST-

HH, we design the following scoring function for any pair of methods.  
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where sXX
k (sYY

k), nXX
k (nYY

k) are the maximum score and the total number of templates with oligomeric 

state k from POST-XX (POST-YY), respectively. N is the total number of used templates. The optimization 

of the weights a1, a2, b1, b2 on the training set follows the same procedure as in POST. For the combination 

of POST-DP and POST-HH methods, we determined the weights to be 4.5, 3, 2, and 4, respectively (as 

shown in Table S8). Similarly, for the combination of POST-DP and POST-PL methods, the weights were 

set to 3, 6, 1, and 5 (Table S9), and for the POST-HH and POST-PL methods, the weights were optimized 

to 2, 9, 4, and 6 (Table S10). Additionally, the corresponding probability thresholds for these combinations 

were set to 0.2, 0.2, and 0.15, respectively. These thresholds were established based on the training data to 

maximize the F1-score for each combination. 

 

Text 1.4 Oligomeric state inference based on sequence similarity 

We employ a nearest-neighbor approach based on sequence similarity to templates from our template 

library, which is denoted as SeqTrans. Specifically, we first calculate sequence identities between a given 

protein sequence and all templates in the library using MMseqs2 [1] with default parameters. The most 

similar template (i.e., the nearest neighbor) is then used to infer the oligomeric state of the query protein. 

 

To investigate the impact of sequence identity between the query protein and the templates on prediction 

performance, we conducted evaluations under two conditions: (1) SeqTrans_Full: All templates in the 

template library are used. (2) SeqTrans_30: Templates with ≥30% sequence identity to the query protein 

are excluded. 

 

Text 1.5 AlphaFold2-based oligomeric state inference 
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For each protein sequence, AlphaFold v2.3.2[2] was run to model the protein in four different oligomeric 

states (i.e., monomer, homo-dimer, homo-trimer, and homo-tetramer). We used HHblits[3] to precompute 

the multiple sequence alignments (MSAs) for the target sequences, which were then trivially replicated 

repeatedly for homologous complexes. No templates were used, and no relaxation was performed. For 

monomer structures, all five "monomer" model parameters were applied, while complex structures were 

generated using all five "multimer" model parameters. This approach yielded 20 predictions for each test 

protein. During oligomeric state inference, if the maximum ipTM+pTM score for the dimer, trimer, and 

tetramer exceeds a threshold C, the state with the highest ipTM+pTM is predicted. If the maximum score 

is between 0.5 and C, and the pLDDT of the monomer is greater than 75, the prediction will be the monomer. 

If the pLDDT is less than or equal to 75, the state with the highest ipTM+pTM among the dimer, trimer, 

and tetramer will be selected. If all ipTM+pTM scores for the dimer, trimer, and tetramer are below 0.5, 

the monomer state is predicted. The results for different values of C are presented in Figure S4. In the final 

prediction, we chose C to be 0.8. Since the TS1220 dataset contains only monomers and dimers, we used 

AlphaFold2 to predict only the monomeric and dimeric structures for each protein to save time. For 

comparison, POST’s outputs were also adjusted to include only monomers and dimers. 

 

Text 2 Evaluation metrics 

In this work, two types of evaluation metrics [4] are used to assess the performance of different methods. 

In this section, we list the detailed definition of these metrics. 

 

Text 2.1 Sample-based metrics 

Sample-based metrics include F1-score (F1), Accuracy (Acc), Precision (Pre) and Recall (Rec) as follows: 
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Where n is the number of samples, Ti (Pi) is the number of real (predicted) labels for the i-th sample, Ii is 

the number of correctly predicted labels for the i-th sample, Ui is the total number of predicted and real 

labels (duplication removed) for the i-th sample. 

 

Text 2.2 Label-based metrics 

For the j-th label lj, TPj (FPj) is the number of times label lj is correctly (incorrectly) predicted, TNj is the 

number of times label lj is correctly not predicted, FNj is the number of times label lj is not predicted when 

it should have been. Then, the Matthews correlation coefficient (MCC) for label lj can be defined based on 

the above four metrics: 

( )( )( )( )
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We also use precision, recall and F1-score to evaluate the performance of the prediction for each label lj. 

2
1

TP TP pre recj j j j
pre rec Fj j jTP FP TP FN pre recj j j j j j
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Supplementary Figures and Tables 
 

 
Figure S1. Distributions of the oligomeric states. (A) The training set and the TS1146 dataset collected by 

us. (B) The targets from CASP14 and CASP15. The bar and line charts represent the number and proportion 

of the four oligomeric states across different datasets, respectively. The x-axis represents the four 

oligomerization states (1: Monomer, 2: Dimer, 3: Trimer and 4: Tetramer). 

 

 

Figure S2. The distribution of probabilities predicted by POST on the dataset of 1134 proteins. The 

probability values are calculated based on the softmax function. The x-axis is divided into bins of width 

0.005, ranging from 0 to 1. The y-axis represents the proportion of probabilities falling into each bin. 

 

A B
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Figure S3.  The cross-entropy losses for the 15 parameter combinations of the scoring function in POST, 

POST-DP, POST-PL, and POST-HH on the training set. The 15 parameter combinations in POST are 

randomly selected from all possible combinations within a defined range of values for six parameters. 

Similarly, POST-DP, POST-PL and POST-HH adopt the same approach as POST. 
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Figure S4.  The F1-scores for different values of threshold C during AF2 oligomeric state inference on the 

TS438, CASP15 targets, and TS1220 datasets. In the final prediction, we chose 0.8 as the threshold. Since 

the different thresholds for monomer’s pLDDT have little impact on the F1-score, we fixed it at 75. 

 

 
Table S1. The P-values for the statistical tests (Mann-Whitney U-test) of the difference between POST and 

its component methods on the TS1146 dataset. 

 POST-HH POST-PL POST-DP 

POST-PL 2.56e-34   

POST-DP 2.56e-34 6.78e-12  

POST 2.56e-34 3.01e-31 2.78e-19 

 

Table S2. F1-score values of POST and its component methods for individual oligomeric states on the 

TS1146 dataset. 

Methods Monomer Dimer Trimer Tetramer 

POST-HH 0.740 0.560 0.561 0.406 
POST-PL 0.799 0.584 0.456 0.369 
POST-DP 0.808 0.568 0.558 0.419 
POST 0.815 0.613 0.602 0.410 
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Table S3. F1-score values of POST and other methods for individual oligomeric states on the CASP14 and 

CASP15 targets. 

 Methods Monomer Dimer Trimer Tetramer 

CASP14 

POST 0.854 0.294 - - 
POST-HH 0.694 0.143 - - 
POST-PL 0.778 0.343 0.571 - 
POST-DP 0.848 0.245 - - 
QUEEN 0.737 0.333 0.750 - 
DeepSub 0.485 0.114 0.889 - 

CASP15 

POST 0.722 0.385 0.286 - 
POST-HH 0.500 0.455 0.333 - 
POST-PL 0.696 0.489 0.600 - 
POST-DP 0.795 0.324 - - 
QUEEN 0.615 0.250 0.500 - 
DeepSub 0.531 0.390 0.750 - 

 

Table S4. Results of POST and AF2 for individual oligomeric states on the TS438, CASP15 targets, and 

TS1220 datasets. 

Datasets Methods Label Precision Recall F1-score 

TS438 

POST 

1 0.730 0.918 0.813 
2 0.570 0.646 0.605 
3 0.909 0.526 0.667 
4 0.462 0.343 0.393 

AF2 

1 0.783 0.860 0.820 

2 0.804 0.519 0.631 

3 0.542 0.684 0.605 

4 0.548 0.486 0.515 

CASP15 

POST 

1 0.619 0.867 0.722 
2 0.417 0.357 0.385 
3 0.500 0.200 0.286 
4 - - - 

AF2 

1 0.710 0.710 0.710 
2 0.700 0.538 0.610 
3 1 0.400 0.570 
4 - - - 

TS1220 

POST 

1 0.743 0.689 0.715 
2 0.692 0.746 0.718 
3 - - - 
4 - - - 

AF2 

1 0.704 0.750 0.726 
2 0.709 0.660 0.680 
3 - - - 
4 - - - 
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Table S5. Comparison of the run time between POST and other methods on 49 CASP15 targets.  

Methods Running time 

POST-HH 3.28min 
POST-PL 0.90min 
POST-DP 4.46min 

POST 8.64min 
AF2 6.41h 

† POST has two stages: template search and oligomeric state inference. During the template search stage, 

POST employs three individual methods to return templates sequentially. POST-DP runs on the CPUs with 

60 processes, while POST-HH and POST-PL use default settings. POST's total runtime is approximately 

equal to the sum of the times taken by the three individual methods. For AlphaFold2, the total time is the 

sum of the modeling times for all four oligomeric states on an NVIDIA A100-PCIE-40GB GPU: 0.32 hours 

for monomers, 1.35 hours for dimers, 2.15 hours for trimers, and 2.59 hours for tetramers. Three targets 

were skipped due to modeling failures. 

 

Table S6. Results of POST-DP and POST on the redundant and non-redundant libraries. The test is on the 

TS1146 dataset. 

Methods Library F1-score Accuracy Precision Recall 

POST-DP 
Non-redundant 0.711 0.666 0.684 0.784 
Redundant 0.709 0.671 0.690 0.767 

POST 
Non-redundant 0.730 0.693 0.711 0.790 
Redundant 0.727 0.683 0.701 0.800 

 

Table S7.  The empirically defined ranges for the six parameters of the scoring function in POST. 

Parameter Ranges 

a1 [1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5] 

a2 [1, 2, 3, 4, 5] 

a3 [6, 7, 8, 9, 10] 

b1 [1, 2, 3, 4, 5] 

b2 [2, 3, 4, 5] 

b3 [6, 7, 8, 9] 
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Table S8.  Cross-entropy losses for the 15 weight combinations of the scoring function in the combination 

of POST-DP and POST-HH on the training set.  

[a1, a2, b1, b2] Loss [a1, a2, b1, b2] Loss 

[4.5, 3, 2, 4] 1.217 [5, 4, 3, 2] 1.302 

[4.5, 4, 2, 5] 1.238 [4.5, 5, 3, 2] 1.314 

[4.5, 2.5, 3, 5] 1.246 [5.5, 4, 3, 1] 1.332 

[4, 1.5, 4, 2] 1.254 [4, 2.5, 5, 3] 1.366 

[5.5, 1.5, 1, 3] 1.257 [4.5, 2.5, 5, 2] 1.395 

[4, 4.5, 3, 4] 1.268 [5.5, 4.5, 4, 4] 1.411 

[5, 2.5, 3, 5] 1.274 [6, 2.5, 5, 2] 1.522 

[6, 3, 1, 2] 1.289   

 

Table S9.  Cross-entropy losses for the 15 weight combinations of the scoring function in the combination 

of POST-DP and POST-PL on the training set.  

[a1, a2, b1, b2] Loss [a1, a2, b1, b2] Loss 

[3, 6, 1, 5] 1.140 [5.5, 4, 2, 3] 1.281 

[1, 7, 3, 1] 1.151 [4, 6, 4, 4] 1.362 

[3, 4, 3, 5] 1.161 [2, 9, 4, 3] 1.393 

[2, 4, 4, 2] 1.177 [5, 6, 4, 6] 1.455 

[3, 5.5, 3, 1] 1.189 [4, 9, 5, 3] 1.602 

[1, 4, 5, 5] 1.215 [5.5, 9, 4, 4] 1.627 

[4, 5.5, 2, 4] 1.226 [5.5, 7, 5, 2] 1.668 

[5, 5.5, 1, 3] 1.249   

 

Table S10.  Cross-entropy losses for the 15 weight combinations of the scoring function in the combination 

of POST-HH and POST-PL on the training set. 

[a1, a2, b1, b2] Loss [a1, a2, b1, b2] Loss 

[2, 9, 4, 6] 2.507 [4.5, 5, 3, 9] 2.631 

[4, 6, 5, 8] 2.661 [3, 6, 5, 8] 2.639 

[4, 8, 4, 9] 2.694 [1, 9, 5, 9] 2.718 

[6, 8, 5, 8] 2.887 [5, 4, 4, 7] 2.544 

[5.5, 6, 3, 9] 2.672 [6, 9, 5, 6] 2.793 

[5.5, 7, 3, 9] 2.694 [5, 8, 3, 8] 2.665 

[4, 6, 2, 9] 2.569 [4, 4, 4, 7] 2.521 

[5, 7, 5, 8] 2.776   
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