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Abstract

Motivation: It is fundamental to cut multi-domain proteins into individual domains, for precise domain-based struc-
tural and functional studies. In the past, sequence-based and structure-based domain parsing was carried out inde-
pendently with different methodologies. The recent progress in deep learning-based protein structure prediction
provides the opportunity to unify sequence-based and structure-based domain parsing.

Results: Based on the inter-residue distance matrix, which can be either derived from the input structure or pre-
dicted by trRosettaX, we can decode the domain boundaries under a unified framework. We name the proposed
method UniDoc. The principle of UniDoc is based on the well-accepted physical concept of maximizing intra-domain
interaction while minimizing inter-domain interaction. Comprehensive tests on five benchmark datasets indicate
that UniDoc outperforms other state-of-the-art methods in terms of both accuracy and speed, for both sequence-
based and structure-based domain parsing. The major contribution of UniDoc is providing a unified framework for
structure-based and sequence-based domain parsing. We hope that UniDoc would be a convenient tool for protein

domain analysis.

Availability and implementation: https://yanglab.nankai.edu.cn/UniDoc/.

Contact: yangjy@sdu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The protein domain is defined as the basic unit of proteins, which
can fold and carry out biological functions independently
(Wetlaufer, 1973). Decomposition of multi-domain proteins into
domains is fundamental for precise domain-based structure predic-
tion and functional characterizations. To decompose the protein
structures in the Protein Data Bank (PDB) (Berman et al., 2000), a
few structure-based domain databases were developed, including
SCOP (Murzin et al., 1995), CATH (Orengo et al., 1997) and
ECOD (Cheng et al., 2014). It is non-trivial to decompose protein
structures into domains, especially when the boundaries are blurred
(Postic et al., 2017). For example, manual annotations are con-
ducted in the construction of the SCOP databases.

A few automated algorithms were developed to decompose pro-
tein structures into domains. PDP (Alexandrov and Shindyalov,
2003) is one of the widely used programs that maximize intra-
domain interactions while minimizing inter-domain interactions.
DomainParser (Guo et al., 2003) uses a graph-theoretic approach to
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formulate the domain decomposition problem as a network flow
problem. DDOMAIN (Zhou et al., 2007) divides protein into
domains using a normalized contact-based domain-domain inter-
action profile. SWORD (Postic et al., 2017) aims at cutting protein
structure into alternative domains, using a hierarchical clustering
procedure to combine the protein units. However, the application of
this method can be limited by its slower speed. These methods tend
to overcut protein domains and the original secondary structure
may be destroyed after domain decomposition. Eguchi and Huang
(2020) trained a convolutional neural network model for perform-
ing semantic segmentation of protein structures. Although this
method is designed to solve a classification problem that is distinct
from domain parsing, the architecture can be adapted to perform
domain parsing with comparable performance to, e.g. SWORD and
PDP.

As many proteins do not have experimental structures, another
closely related research is the sequence-based prediction of the do-
main boundaries. Many methods have been developed for this pur-
pose, including ThreaDom (Xue et al., 2013), DOMPro (Cheng
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et al., 2006), ConDo (Hong et al., 2019), and DNN-dom (Shi et al.,
2019), CHOP (Liu and Rost, 2004), FIEFDOM (Bondugula et al.,
2009), FUpred (Zheng et al., 2020), etc. ThreaDom, CHOP and
FIEFDOM are template-based approaches, which infer the domain
boundaries by identifying homologous templates with known do-
main information. However, this type of method does not perform
well when the sequence similarity is not sufficient (e.g. <30%).
DOMPro, ConDo and DNN-dom are machine-learning-based
methods. They take the input of coevolutionary information, the
predicted secondary structure, the predicted solvent accessibility and
the sequence profile to train a machine-learning model to predict do-
main boundaries. Their predictive accuracy is in general lower than
the template-based methods. FUpred is a contact-based approach,
which detects domain boundaries from predicted contact map. Its
accuracy of the domain parsing depends on the accuracy of the pre-
dicted contact map.

With the advance in deep learning-based structure prediction
methods (Jumper et al., 20215 Su et al., 2021), it becomes much
more accurate and faster than before to predict protein structure
from protein sequence. However, it remains hard to predict accurate
structure for big proteins (e.g. >3000 amino acids). In such case, we
may still be able to predict relatively accurate inter-residue distances
between domains, which is relatively easier to predict than protein
structure. It is known that correct assignment of domains can lead
to improved structure prediction for individual domains. Therefore,
sequence-based domain parsing is also meaningful.

The advance in protein structure prediction provides the oppor-
tunity to deal with the problems of the sequence-based and the
structure-based domain decompositions under a unified framework.
In this work, we introduce a new domain parsing method UniDoc,
which can predict more accurate domain boundaries using the inter-
residue distance matrix that can be derived from the input structure
or predicted by trRosettaX (Su ez al., 2021).

2 Materials and methods

2.1 Benchmark datasets

Five benchmark datasets (four for structure-based and one for
sequence-based domain parsing) are used in this work, which are
summarized in Table 1.

Each dataset contains single-domain (denoted by Single) and
multi-domain (denoted by Multi) proteins. For the multi-domain
proteins, we give a more detailed classification (Supplementary
Table S1) based on the number of domains and whether they are
continuous. The first three structure-based datasets in the table are
from the work of SWORD (Postic et al., 2017). The main difference
between these datasets is the domain definition from different data-
bases (SCOP, CATH, ECOD and Islam2363). For example, the
domains in the Broad-consensus data set have similar annotations in
CATH, SCOP, ECOD and Islam2363 (Islam et al., 1995), while the
domains in the Consensus dataset have similar annotations in
CATH, SCOP and ECOD. Since Broad-consensus has more strict
domain definitions, it has fewer number of proteins than Consensus.
Islam2363 (Islam et al., 1995) is a domain dataset which contains
2363 manually annotated domain assignments. We also constructed
a new structure-based non-redundant dataset (denoted by Weak-
consensus) by considering consistent domain annotations in SCOP
and CATH. It consists of 2769 proteins with pairwise sequence

Table 1. Summary of the benchmark datasets

Dataset #Single/Multi Definition Type
Islam90 68/19 M 3D
Broad-consensus 273/55 S+C+E+M 3D
Consensus 2841/682 S+C+E 3D
Weak-consensus 2231/538 S+C 3D
FUpred_seq 1700/849 S 1D

S, SCOP; C, CATH; E, ECOD; M, Islam2363.

identify <30%. All proteins that are identical in the Consensus are
removed in the Weak-Consensus, which results in a smaller amount
of data. The last dataset (FUpred_seq) is from the work of FUpred
(Zheng et al., 2020), which is used to evaluate sequence-based do-
main recognition.

2.2 Domain interaction score

The division of a protein structure into domains is based on the intu-
ition that the interaction inside the domains (i.e. intra-domain inter-
action) is stronger than that between domains (inter-domain
interaction). To quantitively measure the domain interactions, we
define domain interaction score (DIS) based on the inter-residue
interaction as follows. It can be characterized by the C4~Cy (C,~C,
for Glycine) distance matrix D. The distance is transformed into
contact probability between 0 and 1 using the following transform:

1
P = T gaa (1)

where dj; is the distance between the ith residue and the jth residue.
The values for dy and 6 are 8.0 and 1.5 A, respectively (Gelly et al.,
2006).

The inter-domain interaction score is defined as:

DISier(D1,D2) =~ 5" 3y, @)

- o o
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where D and D, are two domains with sizes [; and L, respectively;
pij is defined by Equation (1). The parameter « is 0.43 according to
Alexandrov and Shindyalov (2003).

The intra-domain interaction score is defined as:

DS (D) =5 3 1y 6)
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where D is a domain of / amino acids; the parameter 8 is 0.95 empir-
ically. In Supplementary Figure S1, an example is given to visualize
both scores.

2.3 Framework of UniDoc

The overall architecture of UniDoc is shown in Figure 1. Its idea is
similar to the structure-based approach PDP. The input can be either
a 3D structure or a protein sequence (Fig. 1A). When the 3D struc-
ture is available, the inter-residue distance map is calculated and the
secondary structure is defined by STRIDE (Heinig and Frishman,
2004). When protein sequence is provided, trRosettaX (Su ez al.,
2021) and PSIPRED (McGuffin ez al., 2000) are applied to predict
the distance map and the secondary structure, respectively.

With the distance map and the secondary structure, a two-step
approach is used to predict domain boundaries. The first step splits
a protein into fragments (‘top-down’, Fig. 1B) while the second step
merges the fragments (‘bottom-up’, Figure 1C) to obtain the final
domain decomposition. More details are presented below.

2.4 Top-down algorithm for splitting

The principle of splitting a protein into domains is to minimize the
interaction between domains. Two constraints are required in the
procedure of split. The first one is the size of a fragment should be
longer than 30. The second one is a cutting position should not be
from regular secondary structures (a-helix and f-sheet). We use two
approaches to decompose a protein into domains, including continu-
ous and discontinuous splits (Fig. 1B). The one resulting in the
smallest interaction score is selected at each step. At the beginning
of the algorithm, the whole protein is regarded as a single-domain
protein consisting of a continuous fragment.

Continuous split. Given a candidate fragment (D), a continuous
split is defined as the split that results in two continuous sub-
fragments (D and D,). A single cutting position is needed for such
a split (Supplementary Fig. S2A). The optimal cutting position can
be obtained by solving the following equation:

€20z fienige z| uo Jasn Alsteaiun Buopueys Aq Z05S20//0.0PBIG/Z/6E/391LB/SOIBWIOIUIOIG/WOo0 dNno olwapede//:sdiy Woll papeojumo(]


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad070#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad070#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad070#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad070#supplementary-data

Unified approach to protein domain parsing 3
A Data preparation B Domain spliting
STRIDE Continuous E
o\ Calculate secondary — SRlIE g
structure L 7/ — f“f‘)
~—— &
— Discontinuous E
&y ( Calculate distance ---GGYEAVEELLNLHPDAEIQM- - —] split °E’
o0
--KMESRTMYRVSNVDKVKGELYLQ- - - L I_Lgs+1 ! g
---GVNVFSNTEIT--- fragment
fragment
I n p Ut Secondary structure N J ’
Structure ~ AND 2 " - !
OR Distance map Domain merging
Sequence ;& 3
i i Update
PSIPRED 4 > Y
¥\ Predictsecondary RS Merge?
structure N
(fragments) Merged fragment
~ trRosettaX
dicted
Predict distance %r:m':ines
map

..

. ., .

Fig. 1. Framework of UniDoc. (A) The input to UniDoc can be either a structure or a protein sequence. (B) Top-down algorithm to decompose a fragment into two
sub-fragments using either a continuous or discontinuous split. (C) Bottom-up algorithm for merging fragments

k= argmin DISimer (Dli(/aDl;/% (4)
1<k <l

where [ is the length of D; D* and D,* are the resulting sub-
fragments at the cutting position k’.

Discontinuous split. A discontinuous split is defined as the split
that results in one discontinuous fragment (D;) and one continuous
fragment (D,). Two cutting positions are needed for such a split
(Supplementary Fig. S2B). The optimal cutting positions ¢ and s can
be obtained with the following equation:

(t,s) = argmin  DISpe (D)<, D5, (5)
1<t,d <l
s>t + 35,
dyw < 8A

where D" ¥ and D," ¥ are discontinuous and continuous sub-
fragments, respectively, from the cutting positions # and s'. Note
that the above equation implies that two key constraints are forced
to ensure the splitting is meaningful. First, the two cutting points
should not be too close to each other in the 1D sequence (>35) to
ensure that the resulting continuous fragment is not too small.
Second, the two cutting points should not be too far away from each
other in the 3D structure to ensure that the sequentially distant sites
are spatially close.

To partly address the issue of over-splitting (i.e. splitting more
number of domains than the native definition), the interaction score
between the sub-fragments after splitting is compared with the inter-
action score of the original fragment (DIS;,,.) as follows. First, we
select the optimal split with the smallest interaction score (DIS;er)
from the continuous and the discontinuous splits. Second, this split
is accepted only when DIS;, ;.. is less than half of DIS;,; otherwise,
no split is performed on this fragment to avoid over-splitting.

Note that the top-down approach ensures that the interactions
between the resulted sub-fragments from each step are minimized,;
however, it does not guarantee that the interactions among sub-
fragments from multiple steps are minimized. This may be because
the top-down approach only captures local interactions in each step.

To solve this problem, a bottom-up algorithm is applied to merge
sub-fragments that have strong interactions, as detailed below.

2.5 Bottom-up algorithm for merging

A bottom-up algorithm is applied iteratively to merge the fragments
from the top-down splitting into domains to maximize the interac-
tions inside each domain as follows (Fig. 1C). Two fragments (D;
and D)) are selected from all fragment pairs to maximize the score
defined by the following formula:

S(l77) = DISinter(Di7 D/) - min{DISinrra (Di)>DISim’ra (D/)}7 (6)

where 7 and j are between 1 and the total number of fragments from
the top-down splitting. The fragments D; and D; are merged, if S(I,
]) is positive, meaning that the interaction between these fragments
is stronger than within one of the individual fragments; otherwise,
the merging step is done.

A post-processing step is further applied to merge less compact
fragments. A fragment with weak intra-domain contact (DIS;,
<1.0) will be merged with another fragment that has the strongest
interaction with it (i.e. the one with the highest value of DIS; ;).

2.6 Performance evaluation

The performance of classifying single and multi-domain proteins is
measured mainly based on the metric Matthew’s correlation coeffi-
cient (MCC). In addition, the precision and the accuracy are also
calculated.

For structure-based domain parsing, the metric CDO (Correct
Domain Overlap) score is used to measure the performance of a
method (Alexandrov and Shindyalov, 2003; Postic et al., 2017).
CDO score is calculated as the ratio of targets with correct domain
assignment (Supplementary Table S2). A domain assignment is con-
sidered correct if the following conditions are satisfied: (i) the pre-
dicted number of domains is consistent with the number of
annotated domains; (ii) the overlap between each predicted domain
and the reference is greater than a given threshold (denoted by 2).
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Previously, this threshold was simply set to 85% (Alexandrov and
Shindyalov, 2003; Postic et al., 2017). We will discuss the impact of
this threshold later.

For sequence-based domain boundary prediction, besides the
above metrics, NDO (Normalized Domain Overlap) score (Tai
et al., 2005) is used (Shi et al., 2019; Xue et al., 2013; Zheng et al.,
2020). More details about the calculation of the above metrics are
available in Supplementary Table S3.

3 Results and discussions

3.1 Structure-based domain parsing

3.1.1 Classification of single- and multi-domain proteins

Based on the domain parsing result, we can infer if it is a single-
domain or a multi-domain target. Figure 2A shows the MCCs for
UniDoc and the other two controlled methods (SWORD* and PDP)
on four structure datasets. Note that SWORD* refers to taking the
default first-ranked prediction from SWORD. Except for the dataset
Broad-consensus, UniDoc has a higher MCC than other methods on
the other three datasets. The MCC may be easily affected by the
wrong predictions for just a few multi-domain targets, given the
small size of multi-domain proteins. The correctly predicted num-
bers of multi-domain proteins are 44, 48 and 51 for UniDoc,
SWORD* and PDP, respectively. PDP (resp. SWORD?*) has the
highest recall at the expense of lower precision for multi-domain
(resp. single-domain) targets, indicating that it tends to overcut
(resp. undercut) the structures into domains (Supplementary
Table S4).

3.1.2 Performance on multi-domain proteins

Figure 2B-D summarizes the comparisons among UniDoc,
SWORD* and PDP on multi-domain proteins (Supplementary Fig.
S3 for proteins with >2 domains). Figure 2B suggests that when the
domain overlap threshold is set to 85%, UniDoc outperforms the
two controlled methods on all datasets. We also investigate the im-
pact of this threshold (#). When this threshold is changed between 0
and 1, we calculate the corresponding CDO score on each dataset
for each method. A higher/lower value of # means a more/less strin-
gent requirement for an assignment to be regarded as correct, which
thus results in a lower/higher CDO score. The results are shown in
Figure 2C and D, for comparison with PDP and SWORD*, respect-
ively. They suggest except for the small dataset Broad-consensus (55
targets), UniDoc has consistently higher CDO scores than both
methods when the threshold becomes more stringent than 85%.
This suggests that the domain assignments by UniDoc are in a higher
resolution than the controlled methods. On the Broad-consensus
dataset, UniDoc is competitive with PDP and SWORD*, as shown
by the close distance between the diagonal line and the brown curve.

3.1.3 Impact of ambiguous definition of domain boundary
When the domain boundary for a protein is blurred, the domain
annotations by CATH and SCOP are not always consistent. CATH
tends to cut proteins into smaller domains; while SCOP uses evolu-
tionary and structural relationships to define domains, making the
SCOP domains larger. This inconsistent domain definition may af-
fect the performance assessment. A few case studies are given to il-
lustrate this issue.

For the protein APO-liver alcohol debydrogenase (PDB ID:
8ADH, chain A, Supplementary Fig. S4A), both SCOP and CATH
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Fig. 2. Performance for structure-based domain parsing. (A) The MCCs for UniDoc and the other two controlled methods (SWORD* and PDP) on four structure datasets. (B)
The performance on multi-domain proteins in terms of CDO score at the domain overlap threshold of 85%. (C, D) are the CDO scores at varying overlap thresholds between

0 and 1. The dots represent the scores at the threshold of 85%
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decompose it as two domains but with different domain boundaries.
CATH divides the a-helix (residues 165-188, highlighted in a circle
in Supplementary Fig. S4A) into two segments; while SCOP keeps
this o-helix as a whole. The domain predictions by PDP and
SWORD* are consistent with the CATH definition, while UniDoc’s
prediction is consistent with the SCOP definition. Meanwhile, the
SWORD predictions are not consistent with the SCOP definition.
For the protein X-ray crystal structures of trypsin complexes and
thrombin complexes (PDB ID: 1PHH, chain A, Supplementary Fig.
S4B), it is difficult to distinguish the number of domains and their
boundaries from the distance map. The boundary division for this
example is very ambiguous. Although both CATH and SCOP divide
this structure into two domains, the domain boundaries are differ-
ent. Due to different assignments of the highlighted p-strands (resi-
dues 174-181 and residues 267-273) and the segments (residues
73-95 and 352-394), CATH assigns multiple discontinuous frag-
ments in both domains; while SCOP keeps continuous fragments
into one of the domains. The predictions by UniDoc and PDP are
consistent with the SCOP definition while the SWORD* prediction
is different from both CATH and SCOP definitions. None of the sol-
utions by SWORD are similar to the definition by SCOP or CATH.
The last example is the protein multifunctional methyltransfer-
ase (PDB ID: 1PJQ, chain A, Supplementary Fig. S4C). From the dis-
tance map, we can see that there are sparse interactions among the
residues 113-457. This makes the number of domains by CATH
and SCOP different (5 and 3, respectively). The residues from 113 to
215 (highlighted in box) are divided into two domains by CATH
and one by SCOP. The results of UniDoc and PDP are consistent
with CATH; while the SWORD* prediction is consistent with
SCOP. Similarly, CATH splits the residues from 216 to 457 (high-
lighted in box) into two domains while SCOP combines them in one
domain. The predictions by all three methods are consistent with the
CATH annotations. One of the solutions by SWORD is correct
according to CATH; but it is not on the top in its default ranking.

3.1.4 Running time analysis

We compare the time complexity of structure-based domain parsing
by UniDoc, SWORD and PDP on the proteins from the dataset
Broad-consensus. All three methods were run locally and the run-
ning time for all proteins was recorded. Supplementary Figure S5
shows that SWORD is much slower than UniDoc and PDP. On aver-
age, UniDoc takes 0.017s to process one protein, which is more
than two times faster than PDP (0.048 s per protein); and 312 times
faster than SWORD (5.32's per protein). The fast speed of UniDoc
can be explained by the strategy employed, i.e. the cutting points
that break the secondary structure are not considered. This
decreases the time complexity while ensuring the precision of do-
main boundary prediction.

3.2. Sequence-based domain parsing

As the inter-residue distance prediction becomes much more accur-
ate than before, we can apply the above structure-based domain
parsing algorithm to the problem of sequence-based domain bound-
ary prediction. The only difference is the inter-residue distance is
predicted by trRosettaX rather than derived from the input
structure.

Though many sequence-based domain boundary prediction
methods are available, we only compare UniDoc with FUpred
(Zheng et al., 2020), which is the state-of-the-art method that uses
predicted inter-residue contacts. FUpred was installed and executed
locally. The comparison is based on the dataset from the FUpred
work, which consists of 1700 single-domain proteins and 849 multi-
domain proteins. We also derive the distance/contact from the native
structure as inputs to UniDoc and FUpred, with the same definition
of inter-residue contact in FUpred.

First, we compare the performances in classifying single-domain
and multi-domain proteins by both methods. As shown in
Supplementary Table S5, with the distance/contact map predicted
by trRosettaX, the MCC of UniDoc is 0.804, which is slightly higher
than FUpred (0.784). This is consistent with the reported MCC in

the FUpred paper, i.e. 0.799 with predicted contact map ResPRE
(Zheng et al., 2020).

Second, the performances on parsing 849 multi-domain proteins
by UniDoc and FUpred are compared based on CDO and NDO
scores (Supplementary Table S5). Supplementary Figure S6 summa-
rizes the results on proteins with >2 domains. The CDO score sug-
gests that UniDoc correctly recognized the domain boundaries for
49.59% (=421/849) of multi-domain proteins, which is 4.24%
higher than FUpred. This translates to a total of 36 proteins that are
correctly predicted by UniDoc but not by FUpred. Note that for
structure-based domain parsing (Fig. 2), the CDO score is above
60%, much higher than the data in Supplementary Table S5. This is
likely because the domain definition for the proteins in this dataset
is from SCOP only. Thus, it may inevitably have some proteins with
ambiguous definitions of domain boundaries. To verify this hypoth-
esis, for the multi-domain proteins in the FUpred-seq dataset, we
compared the domain annotations in CATH and SCOP. It turns out
that CATH and SCOP have different domain definitions for 458
proteins out of the 849 multi-domain proteins in this dataset.

Similar to the previous analysis, we compute the CDO scores at
different overlap thresholds in Supplementary Figure S7A. It shows
that UniDoc consistently outperforms FUpred at all thresholds. As
the CDO score is binary, we further compare both methods based
on the NDO score, which is widely used for measuring sequence-
based domain recognition methods. Supplementary Table S5 shows
that UniDoc achieves an NDO score of 0.812, slightly higher than
FUpred (0.804). Note that FUpred’s NDO score was 0.791 with the
predicted contact map by ResPRE, comparable with the data in
Supplementary Table SS5.

In addition, we compare the time complexity of UniDoc and
FUpred on 849 multi-domain proteins in Supplementary Figure S7B.
The time for input data preparation (including distance/map and
secondary structure prediction) is not considered for both methods.
On average, UniDoc takes 0.30s per protein to predict domain
boundaries, which is more than 2 times faster than FUpred (0.73 s
per protein).

3.3 Impact of the accuracy of predicted distance

Since UniDoc decomposes protein domains based on distance ma-
trix, whether accurate distance prediction can be transferred into a
correct prediction of domain boundaries. First, we compute the ac-
curacy of the predicted distance [i.e. distance precision defined in
Du et al. (2022)] for the 849 multi-domain proteins. Figure 3A
shows that the distances for most (92%) proteins were predicted
with a precision higher than 0.6, making it possible to infer correct
domain boundaries from sequences. However, Figure 3B indicates
that there is no clear correlation between the distance precision and
the NDO score. This is probably because the distance precision
measures the global accuracy while the NDO score measures the ac-
curacy of boundary (kind of local measure) detection. Two represen-
tative examples are given in Figure 3D and E to illustrate this.

According to SCOP, the protein crystal structure of the Arg-
specific cysteine proteinase gingipain R (PDB ID: 1CVR, chain A,
Fig. 3D), has two domains (residues 1-350 and 351-432). Correct
domain boundary was obtained when the native structure was used
in UniDoc. The predicted distance for this protein is accurate with a
distance precision of 0.87. However, the domain boundary was pre-
dicted wrongly from this distance (i.e. three domains) are incorrect
with a CDO score of 0 and NDO score of 0.685. This is mostly be-
cause the inter-domain distance was predicted with poor precision
though the intra-domain distance was predicted well.

The opposite of this example is the solution structure of HNF-6
(PDB ID: 1S7E, chain A, Fig. 3E), which has two domains according
to SCOP (residues 1-80 and residues 81-147). UniDoc made correct
predictions with both the native and the predicted distances. Note
that the predicted intra-domain distance is of low accuracy, resulting
in a low global distance precision (0.383). However, the inter-
domain distance was correctly predicted, making the domain
boundary clear to infer.

We divide the distance precision from 0 to 1 into 10 bins and cal-
culate the distribution of NDO scores in each bin. The numbers of
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proteins with distance precision in the range from 0 to 0.6 are very
small (Fig. 3C), which has no statistical significance. When the dis-
tance precision is higher than 0.6, Figure 3C shows that the median
value of the NDO score does become higher with a more accurate

distance prediction.

4 Conclusions

Decomposition of multi-domain proteins into domains is of funda-
mental meaning for precise domain-based structure prediction and
functional characterizations. The recent breakthroughs in deep
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Unified approach to protein domain parsing

learning-based protein structure prediction make it possible to unify
structure-based and sequence-based domain parsing. We introduce
one of such approaches, UniDoc, for unified domain parsing using
either structure-derived or predicted inter-residue distance matrix.
Comprehensive tests on five benchmark datasets show that UniDoc
works very well, outperforming other peering methods, in terms of
both accuracy and speed. Though with a high prediction accuracy,
UniDoc still has a limit. Only one domain decomposition is given
even if multiple alternative decompositions exist. More efforts are
needed to deal with the proteins with ambiguous definition of do-
main boundaries. We anticipate that the release of UniDoc could
contribute to the community for protein domain analysis.
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