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ABSTRACT: Protein−peptide interaction is crucial for many
cellular processes. It is difficult to determine the interaction by
experiments as peptides are often very flexible in structure.
Accurate sequence-based prediction of peptide-binding
residues can facilitate the study of this interaction. In this
work, we developed two novel sequence-based methods
SVMpep and PepBind to identify the peptide-binding
residues. Recent studies demonstrate that the protein−peptide
binding is closely associated with intrinsic disorder. We thus
introduced intrinsic disorder in our feature design and
developed the ab initio method SVMpep. Experiments show
that intrinsic disorder contributes to 1.2−5.2% improvement in area under the receiver operating characteristic curve (AUC).
Comparison to the recent sequence-based method SPRINT-Seq reveals that SVMpep improves the AUC and Matthews
correlation coefficient (MCC) by at least 7.7% and 70%, respectively. In addition, by combining SVMpep with two template-
based methods S-SITE and TM-SITE, we next proposed the consensus-based method PepBind. Remarkably, compared with
the latest structure-based method SPRINT-Str, PepBind improves the AUC and MCC by 1.7% and 28.3%, respectively, on the
same independent test set of SPRINT-Str. The success of PepBind is attributed to the improved prediction of the ab initio
method SVMpep by introducing intrinsic disorder and the consensus prediction by combining three complementary methods.
A web server that implements the proposed methods is freely available at http://yanglab.nankai.edu.cn/PepBind/.

1. INTRODUCTION

Protein−peptide interaction is essential for many cellular
processes, such as programmed cell death,1 gene expression,2

DNA replication and repair,3 and so on. The peptides involved
in protein binding are usually flexible in structure, short in
length, and weak in binding affinity,4 which challenge the
experimental detection of these interactions. Fortunately, there
are many researchers working on the investigation of protein−
peptide interactions. These efforts lead to a steady increase in
the experimental source of protein−peptide interactions, with
about 20 000 entries of protein−peptide complex structures in
the BioLiP database.5

The functional importance, the challenges in experimental
determination, and the availability of the experimental data
motivate the development of computational methods for the
prediction of protein−peptide binding residues. These
predictors allow for high-throughput peptide-binding annota-
tions in protein chains and therefore provide a viable solution
to the investigation of protein−peptide binding events. They
can be broadly classified into structure- and sequence-based
methods.
The structure-based methods include PepSite,6 Peptimap,7

ACCLUSTER,8 SPRINT-Str,9 and so on. PepSite works by
searching the regions that match the spatial matrix derived
from known protein−peptide complex structures and employs

the distance constraints to infer the binding sites. The
Peptimap protocol was developed based on fragment mapping
and clustering by considering the characteristics of peptide
binding sites. In ACCLUSTER, 20 standard amino acids were
first used as probes to scan the protein surface to generate
binding poses of strong chemical interactions with the protein.
This was followed by clustering of the poses and the largest
cluster was used to infer the binding sites. The recent method
SPRINT-Str applies the machine learning algorithm random
forest to predict the binding residues, based on the sequence
and the structural information extracted from the experimental
data.
The structures for most proteins are not available, which

motivates the development of sequence-based methods. To the
best of our knowledge, there is only one sequence-based
method for peptide-binding residues prediction, i.e., SPRINT-
Seq10 It is a machine learning based method with features
extracted from sequence profile and predicted structural
attributes. On the other hand, the past decades witnessed
the development of many sequence-based approaches to the
prediction of binding residues for other ligands, such as DNA/
RNA,11 Coenzyme A (COA),12 carbohydrates,13 and so on.
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Although intrinsic disorder has been reported to participate
in protein−peptide interactions,14 no existing peptide binding
predictors considered this valuable sequence characteristics.
We therefore proposed a novel ab initio model SVMpep by
introducing the intrinsic disorder in feature design for the first
time. The evaluation shows that the accurate binding
prediction of SVMpep benefits from the integration of intrinsic
disorder in sequence representation. Moreover, the consensus-
based method, which combines several individual predictors
together, usually outperforms its components. This fact
motivated us to develop the first-of-its-kind consensus-based
method PepBind, by combining the ab initio model SVMpep
with the template-based methods S-SITE and TM-SITE,15 to
further improve the accuracy for the prediction of peptide
binding residues. The comprehensive assessments suggest that
the consensus PepBind is not only more accurate than all three
individual methods but also outperforms the existing sequence-
based method SPRINT-Seq and the recent structure-based
method SPRINT-Str.

2. METHODS

2.1. Benchmark Data Sets. The 1279 peptide-binding
proteins (PBPs) from the work of SPRINT-Seq are used in this
study; these contain 16 749 peptide-binding residues and
290 943 nonbinding residues. This data set was initially
extracted from the BioLiP database5 and redundancy with
>30% sequence identity was removed. We randomly divided
these 1279 PBPs into two subsets of equal size for training and
test, respectively. The training set comprises 640 PBPs with
8259 (149 103) binding (nonbinding) residues (denoted by
TR640). To save the time used for training, 20% of the
proteins in TR640 were randomly selected for a coarse-grained
tuning of parameters (i.e., 128 proteins, denoted by TR128).
The test set contains 639 PBPs with 8490 (141 840) binding
(nonbinding) residues (denoted by TE639). To compare with
other methods, we also collected the test data sets of the
sequence-based method SPRINT-Seq10 and the structure-
based method SPRINT-Str,9 which comprise 80 (denoted by
TE80) and 125 proteins (denoted by TE125), respectively.
Comparisons of these data sets show that TE80 is a subset of

TE125 and TE639, while 24 proteins in TE125 are from the
training set TR640 and the remaining 101 proteins are from
test set TE639.

2.2. Ab Initio Method SVMpep. As shown in the gray
panel of Figure 1, the query sequence is submitted to the
sequence−profile alignment algorithm PSI-BLAST,16 the
profile−profile alignment program HHblits,17 the secondary
structure prediction tool SPIDER 2.0,18 and the intrinsic
disorder predictor IUPred.19 The derived information is
believed to be enriched with evolutionary and structure
information, which were widely used in the prediction of
protein structure and function.10,20,21 Notably, it is the first
time to introduce the intrinsic disorder information for the
prediction of peptide-binding residues. In fact, the peptides
involved in this binding event are rich of intrinsic disorder.14

For each residue, four feature groups are extracted from its
neighboring residues embedded in a sliding window. The
window size for each feature group was separately selected to
optimize the overall performance (AUC, defined later) of 5-
fold cross validation on the training set TR128 (Supporting
Figure S1).

2.3. Intrinsic Disorder-Based Features. Peptides par-
ticipated in protein−peptide interactions are characterized
with short length, flexible structure, and weak binding affinity.
These are consistent with the attributes of short linear motifs,
which are mostly located in the intrinsic disordered regions
(IDRs).14 We therefore propose to incorporate the informa-
tion on intrinsic disorder in the prediction of peptide-binding
residues. Here, we employed the method IUPred19 to predict
the intrinsic disorder, including the short and the long IDRs,
from the protein sequence. For each type of putative
annotations (i.e., short or long IDRs), we derived the following
nine features for each query residue. These features indicate
the structural flexibility of the query residue and its neighbors
and have been successfully applied in the prediction of
functions related to intrinsic disorder.21,22 The first three
features are the average, the minimum, and the maximum
among the propensity scores of residues in a sliding window of
size 19 centered at the query residue. The window size was
selected based on optimization using the training set TR128

Figure 1. Architecture of the proposed methods SVMpep and PepBind.
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(Supporting Figure S1). The fourth feature is the difference
between the average of the propensity scores for the residues
inside the sliding window (i.e., close neighbors) and the
corresponding average of the query residue’s remote neighbors
(i.e., residues outside the sliding window and 9 residues next to
each terminal of this window are used). The fifth and the sixth
features are the propensity score and the predicted disorder
label (0 or 1) for the query residue, respectively. The last three
features are the length of the IDR in which the query residue
located, the minimum and the maximum distances of the query
residue from both ends of the IDR. In total, we generated 18
(= 9 × 2) features from the IUPred outputs of the short and
the long IDRs.
The recent disorder predictor SPOT-disorder23 was used to

replace IUPred to see if SVMpep could be improved further.
The 5-fold cross validation on training set TR640 shows that
SPOT-disorder-based SVMpep has a very similar value of
AUC to the IUPred-based SVMpep (0.73 versus 0.721).
Moreover, IUPred was designed for short and long IDRs, while
SPOT-disorder does not distinguish between short and long
IDRs. Thus, we prefer using the IUPred program for disorder
prediction in this work.
2.4. Secondary Structure-Based Features. Secondary

structure (SS) comprises three distinct local conformations: α-
helix (H), β-strand (E), and γ -coil (C) and is suggested to be
useful in predicting peptide-binding residues.10 For a query
sequence, we employed the method SPIDER 2.018 to generate
the probabilities of the SS types for each residue. The SS type
for each residue is set to the one with the highest probability.
Utilizing a sliding window of size 7, we first encoded a query
residue by a probability matrix (7 × 3 features) and the
fraction of each SS type (3 features). We next used a 27-
dimensinal vector to represent the secondary structure of the
triplet with the query residue and its two nearest neighbors.
We also considered two kinds of segment-based features,
including the length of the segment enclosing the same SS type
of the query residue, and the minimum and the maximum
distances of the query residue from both ends of this segment.
They were employed previously to predict protein−RNA and
protein−peptide binding residues.10,24 As there are three types
of SS, this segment-based property is represented by 9 (= 3 × 1
+ 3 × 2) features. In total, 60 features were extracted from the
SPIDER 2.0 outputs.
2.5. PSSM Profile-Based Features. The functionally

important residues are generally more conserved than others
along evolution. The residue conservation can be inferred from
a multiple sequence alignment (MSA). We used PSI-BLAST to
find homologous sequences for a query sequence from the
NCBI’s nonredundant data set with three iterations and the e-
value threshold of 0.001 (“-j 3 -h 0.001”). A position specific
scoring matrix (PSSM) and a probability matrix was next
derived from the MSA. Based on these two matrices, the
conservation of each residue can be represented by a 329-
dimensional feature vector, by utilizing a sliding window of size
15. This feature vector includes 300 (= 20 × 15) features
extracted from PSSM, 15 relative entropy25 (RE) values, and
14 near neighbors correlation coefficient (CNCC) from the
probability matrix. CNCC was introduced to measure the
correlation between neighbor residues in SPRINT-Seq10
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where i is the ith residue in a protein with L amino acids; j is
the adjacent residue to the ith residue in a sliding window of
size 15; k represents one of the 20 standard residues; bk is the
Robinson background frequency26 of the residue k; pik is the
probability of the residue k appearing at the ith column
(corresponding to the ith residue in the query) of the MSA;
and Pi is a 20-dimensional vector, corresponding to the ith row
in the probability matrix.

2.6. HMM Profile-Based Features. The profile−profile
alignment algorithm HHblits is shown to be faster and more
sensitive than PSI-BLAST.17 We thus used HHblits to generate
another profile for the calculation of residue conservations.
Specifically, HHblits searches the homologies of a given query
from the database uniprot20_2015_06 with the default
parameters, i.e., “-n 3 -maxfilt 500000 -diff inf -id 99 -cov
60”. Then a hidden Markov model (HMM) profile is obtained.
Each line in this profile comprises the emission frequencies
(EFs) for the 20 standard amino acids, 7 transition
probabilities, and 3 local diversities. The EFs for a given
residue in the query are defined by the following equation

EF 1000logik
p

2
ik= − (3)

where i is the ith residue; k represents a standard residue.
Based on this equation, the EFs are then converted back into
probabilities pik, which equal to 0 when the EF is denoted by a
star “*”. The recovered probability matrix is then used to
measure the residue conservation, by including the 20-
dimentional vector from this matrix and the CNCC features
as well. Here, we used a sliding window of size 9 to obtain 188
(= 9 × 20 + 8) features in total.

2.7. Support Vector Machine (SVM). A total of 595 (=
18 + 60 + 329 + 188) features have been extracted above and
they are fed into SVM for training and classification. SVM has
been successfully applied to many different classification
problems.20,24 Due to the better predictive performance, the
radial basis functional (RBF) kernel was selected here. Thus,
our SVM classifier has two key parameters, the regularization
factor C and the kernel parameter γ. Considering C in [0.5, 1,
2, 4, 8, 16] and γ in [0.0625, 0.125, 0.25, 0.5], we performed a
grid search to optimize the overall AUC based on a 5-fold cross
validation on the training set TR640. The implementation of
SVM was based on the LIBSVM package (https://www.csie.
ntu.edu.tw/~cjlin/libsvm/). Before training and test, the
program “svm-scale” was used to normalize the features into
the range of [−1, 1]. A residue is predicted as a binding residue
if the probability score from SVM is higher than the threshold
of 0.25, to maximize the MCC on the training set TR640 (see
Supporting Figure S2).

2.8. Template-Based Methods TM-SITE and S-SITE.
Template-based method works by transferring the binding
annotations from homologous templates to the query based on
query-template alignments. TM-SITE and S-SITE are two
typical template-based methods, which make use of structure
and sequence profile information, respectively.15 The protein−
ligand complex from BioLiP5 are used as the template library.
In TM-SITE, the alignment was done based structure
alignment of ligand-binding specific structural fragments.
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Global structure was not employed to reduce the influence of
regions that are not related to ligand binding. For each
template of protein−ligand complex, the template fragment
corresponds to the subsequence from the first binding residue
to the last binding residue (called SSFL). In general, each
SSFL consists of at least three residues. For the query
structure, its SSFL was extracted from geometry-based binding
pocket detection. In S-SITE, the alignment was performed
based on sequence profile−profile alignment. It was designed
to complement TM-SITE, especially for proteins with no
structure information and proteins with low-resolution
structures. Scoring functions were designed to judge the
reliability of their predictions. For more details about these
methods, please refer to the original work.15 In this work, the
template library of TM-SITE and S-SITE was restricted to
peptides (i.e., with BioLiP’s ligand ID “III”) as we aim to
peptide-binding residues.
2.9. Consensus-Based Method PepBind. Since the ab

initio predictor and the template-based method are usually
complementary, we next designed a consensus-based method
PepBind, by combining SVMpep with two template-based
methods S-SITE and TM-SITE.15 These two methods were
developed for the detection of binding residues for ligands of
general type, and are available in the I-TASSER Suite.27 S-
SITE utilizes the binding-specific sequence profile−profile
alignment and TM-SITE works by the binding-specific
substructures matching. The protein structure required by
the TM-SITE was generated by the I-TASSER Suite.27 Note
that for both structure modeling and binding residues
prediction, all templates with 30% sequence identity to the
query sequence were excluded for fair comparison. The
outputs of the program S-SITE/TM-SITE comprise a list of
predictions, where the predictions are sorted by their
confidence scores (c-scores) from high to low. Specifically,
the S-SITE (TM-SITE) method suggests that the prediction
with c-score ≥ 0.25 (0.35) is reliable. We considered their top
1 predictions (see Figure 1) and the corresponding c-scores to
design PepBind. Here, we denote the length of a protein
sequence by L; i (i = 1, 2, ..., L) represents the ith residue in
this sequence; 0/1 is the binary prediction of a given method,
indicating a predicted nonbinding/binding residue; S-SITE/
TM-SITE/SVMpep generates both binary bi

1/bi
2/bi

3 and
propensity score pi

1/pi
2/pi

3 for the ith residue. The binary bi
c

and the propensity score pi
c for the ith residue by PepBind are

calculated as follows.
Case 1. If the top 1 predictions of S-SITE and TM-SITE are

both reliable, i.e., S-SITE c-score ≥ 0.25 and TM-SITE c-score
≥ 0.35, then these two predictions along with the SVMpep
outputs are combined to form the final PepBind outputs,
where the binary bi

c and the propensity score pi
c are formulated

as below.
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Case 2. If only S-SITE or TM-SITE generates a reliable
prediction, the corresponding prediction is integrated with the
SVMpep prediction, to infer the PepBind outputs by the
following formulas.
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where k = 1 or 2, representing the method S-SITE and TM-
SITE, respectively.
Case 3. When both S-SITE and TM-SITE do not have

reliable predictions, we still employed their top 1 predictions.
A residue is regarded as in binding if both methods predict it as
a binding residue. The template-based binaries bi and
propensity scores pi are first refined by
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We then combined these updated outputs with the SVMpep
annotations by the strategy described in case 2.

2.10. Evaluation Criteria. The proposed methods
SVMpep and PepBind take the protein sequence as input
and provide the binary and the propensity score for each
residue, where the propensity score suggests the likelihood of a
residue to be in binding. As the nonbinding residues
(negatives) are about 17 times more than the binding residues
(positives), indicating that the data sets are highly unbalanced,
the predictive performance for the binary prediction of our
proposed methods are assessed by Precision (Pre), Recall
(Rec) and Matthews correlation coefficient (MCC).

Pre
TP

TP FP
=

+ (7)

Rec
TP

TP FN
=

+ (8)

MCC
TP TN FP FN

(TP FP)(TP FN)(TN FP)(TN FN)

=
× − ×

+ + + +
(9)
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where TP (true positive) is the number of correctly predicted
binding residues, TN (true negative) is the number of correctly
predicted nonbinding residues, FP (false positive) is the
number of nonbinding residues that are incorrectly predicted
as binding residues, and FN (false negative) is the number of
binding residues that are incorrectly predicted as nonbinding
residues. MCC ranges from −1 to 1. An MCC of zero indicates
a random prediction. Higher values of the above measures
indicate better binary prediction.
The prediction with the propensity scores is evaluated by the

receiver operating characteristic (ROC) curves and the area
under the ROC curve (AUC). For each real value p (from 0 to
1), the residues with propensity score ≥ p are set as positives
(binding residues); otherwise, the residues are set as negatives
(nonbinding residues). Therefore, each p corresponds to a
point (FP-rate, TP-rate), where TP-rate = TP/(TP + FN), and
FP-rate = FP/(FP + TN). By connecting all the points for all
values of p between 0 and 1, a ROC curve is generated. The
area under the ROC curve (AUC) thus implies the predictive
quality of the propensity scores. The AUC value is between 0
and 1 and the higher the better. An AUC of 0.5 indicates a
random prediction. The AUC lower than 0.5 indicates a
reverse prediction.

3. RESULTS

In this section, we present the performance of the component
and the consensus methods on different data sets. The
performance of the consensus method PepBind is further
analyzed on the proteins with different recognition types and
different binding ligands.
3.1. Performance of Component Methods. The results

for all component methods are summarized in Table 1 and
Figure 2. Based on 5-fold cross validation on the training set
TR640, SVMpep achieves the overall AUC, MCC, Rec, and
Pre with the values of 0.721, 0.254, 0.106, and 0.680,
respectively. This is consistent with the predictive performance

on the independent test set TE639, where the value of AUC,
MCC, Rec, and Pre are 0.716, 0.253, 0.105, and 0.676,
respectively (Table 1). The low Rec value of 0.11 suggests that
SVMpep is underpredicted. This could be because the data
used for training and testing are extremely unbalanced. But the
Pre value reflects that about 68% predicted binding residues
are correct. The ROC curve in Figure 2 also shows that the
TP-rate of the SVMpep method can reach up to 30% at the
low FP-rate of 5%.
Compared to SVMpred, S-SITE and TM-SITE both achieve

at least 2 times higher Rec values, but >1.9 times lower Pre
values. The overall predictive performances on data sets
TR640 and TE639 both indicate that SVMpep can compete
with S-SITE, where the former provides better output of
propensity scores with 0.02 more AUC and the latter provides
more reliable binary prediction by obtaining at least 0.05
higher MCC. The ROC curves in Figure 2 show that S-SITE is
better than SVMpep in the region of FP-rate ≤ 0.2 but worse
when the FP-rate is >0.2. These data indicate that the ab initio
method SVMpep is complementary to the template-based
method S-SITE.
Comparing S-SITE to TM-SITE, we found that the former

is surprisingly better than the latter, with at least 0.08, 0.09,
0.11, and 0.08 higher AUC, MCC, Rec, and Pre values,
respectively. This is probably caused by the low quality of the
structure model, as all templates with ≥30% sequence identity
to the query have been removed during structure modeling.

3.2. Performance of the Consensus Method PepBind.
Since the template-based methods and the ab initio method are
complementary to each other, we investigated the predictive
quality of the consensus method PepBind. Compared with all
its components on the independent test set TE639, PepBind
improves the AUC and MCC by at least 7.2 and 12.4%,
respectively. Table 1 shows that PepBind can keep the relative
high Rec value (∼0.3) from its template-based individual S-
SITE and can maintain a Pre value around 0.44. The
assessments on the data sets TR640 and TE639 both support
that PepBind outperforms the other two consensuses between
SVMpep and each template-based method, with at least 1.5
and 2.4% improvement in AUC and MCC, respectively. Figure
2 shows that the ROC curve of PepBind is consistently above
the ROC curves for each individual and almost over the curves
for the other two combinations. These data suggest that
PepBind can improve the prediction with a relatively large
margin. This improvement is not only due to the integration of
ab initio predictor and template-based method but also
attributed to the usage of the complementary template-based
methods S-SITE and TM-SITE.

3.3. Performance of PepBind on Proteins from
Different Families. The protein−peptide interaction is
usually mediated by the short linear motifs, thus the peptide
recognizable regions are generally short in length. This means
that a given sequence interacted with peptides can be locally
similar in peptide recognizable regions but dissimilar in the
other regions. We therefore investigated the predictive
performance of PepBind for the peptide-binding proteins
from different protein families. We first mapped the proteins in
the test set TE639 into the families of the Pfam database.28

Then we evaluated the performance of PepBind on 16 families
with at least 5 proteins. The results are summarized in Table 2.
For most of the listed families, the predictions are in generally
accurate with MCC higher than the overall MCC (i.e., 0.348
from Table 1). For example, for the FHA, PDZ, and SH3

Table 1. Overall Performance of Different Methods on the
Training Set TR640 and the Independent Test Set TE639a

data set method AUC MCC Rec Pre

TR640 S-SITE 0.691 0.307 0.321 0.364
TM-SITE 0.603 0.210 0.213 0.284
SVMpep 0.721 0.254 0.106 0.680
SVMpep + S-SITE 0.747 0.321 0.307 0.445
SVMpep + TM-SITE 0.717 0.291 0.213 0.466
PepBind 0.759 0.329 0.294 0.435
REpep 0.589 0.071 0.192 0.100
COACH 0.649 0.253 0.295 0.290

TE639 S-SITE 0.692 0.309 0.335 0.360
TM-SITE 0.611 0.216 0.230 0.284
SVMpep 0.716 0.253 0.105 0.676
SVMpep + S-SITE 0.751 0.339 0.312 0.440
SVMpep + TM-SITE 0.731 0.311 0.224 0.505
PepBind 0.767 0.348 0.317 0.450
REpep 0.582 0.073 0.190 0.107
COACH 0.646 0.245 0.295 0.283

aThe highest values are highlighted in bold type. The predictive
quality on the training set TR640 is based on the overall performance
of 5-fold cross validation on the TR640 set. REpep is a baseline
method with predictions made based on evolutionary conservation
analysis.
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Figure 2. ROC curves for the different methods on the training set TR640 (A) and the independent test set TE639 (B).

Table 2. Predictive Quality of PepBind on Proteins from Different Familiesa

Pfam ID family name no. proteins MCC Rec Pre AUC

PF00498 FHA 6 0.782 0.741 0.851 0.984
PF00595 PDZ 11 0.765 0.741 0.842 0.934
PF00018 SH3 9 0.703 0.825 0.684 0.941
PF00104 Hormone_recep 6 0.684 0.658 0.739 0.934
PF00640 PID 5 0.628 0.710 0.647 0.936
PF00385 Chromo 6 0.626 0.632 0.790 0.867
PF00515 TPR_1 5 0.558 0.616 0.577 0.922
PF00017 SH2 21 0.538 0.576 0.603 0.888
PF00628 PHD 9 0.521 0.533 0.611 0.875
PF00856 SET domain 5 0.508 0.598 0.509 0.900
PF00076 RRM_1 5 0.500 0.519 0.583 0.842
PF00397 WW 9 0.470 0.553 0.517 0.812
PF00073 Rhv 5 0.445 0.536 0.395 0.742
PF00675 Peptidase_M16 5 0.384 0.405 0.400 0.853
PF05193 Peptidase_M16_C 5 0.384 0.405 0.400 0.853
PF00069 Pkinase 12 0.224 0.259 0.263 0.700

aThe rows are sorted by the MCC values in descending order.

Figure 3. Overall AUC values for the SVM models built with different features. The overall AUC values were calculated by 5-fold cross validation
on the training set TR128.
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families, the MCC is above 0.7. These data suggest that,
though PepBind is not specially trained on proteins of certain
families, it could be applied in cross-family predictions with a
reasonable accuracy.
3.4. Discriminative Quality for Binding to Other

Ligands. Since proteins usually employ different sites to
bind different ligands, it is of interest to investigate if the
proposed methods are specific to the identification of peptide-
binding residues. Here we tested PepBind on proteins binding
to other ligands. We randomly extracted 30 carbohydrates-
binding13 (CBH30), 30 DNA-binding,11 (DNA30) and 30
RNA-binding proteins11 (RNA30) from previous studies. We
ran PepBind on these data sets and collected the predictions. It
shows that 0.3%, 1.2%, and 0.5% residues were predicted as
peptide-binding residues for the CBH30, DNA30, and RNA30
data sets, respectively. On the other hand, the corresponding
ratio for the data set TE80 is as high as 3.8%, which is 11.6, 3.2,
and 8.4 times the values for the three different binding data
sets. This indicates that the method PepBind is specific for the
prediction of peptide-binding residues.

4. DISCUSSION

In this section, we investigate the contributions of the features
to the ab initio method SVMpep, the contributions of the
component methods to the consensus method PepBind.
Comparisons with one baseline method, one general-purpose
method, and two peptide-binding predictors are presented as
well.
4.1. Feature Contributions to the ab initio Method

SVMpep. The ab initio method SVMpep is built with four
groups of features with rich evolutionary and structural
information. The evolutionary information is inferred from
the sequence profile by running the programs PSI-BLAST16

and HHblits.17 The structural information comprises the
intrinsic disorder derived from the method IUPred,19 and the
secondary structure generated by SPIDER 2.0.18

We first investigated the contribution of each feature group
for the prediction. In order to save the time used for training,
we performed this analysis by 5-fold cross validation on the

TR128 set. The results are summarized in Figure 3. We can see
that all four feature groups are useful for the identification of
peptide-binding residues. The SVM models built upon a single
feature group range from 0.545 to 0.645 in AUC, where the
profile-based feature group (PSSM and HMM) is more
powerful than others (the white bars in Figure 3). Interestingly,
the features of intrinsic disorder lead to higher AUC value than
the secondary structure.
The AUC was improved by the combinations of different

feature groups. Among all the six SVM models implemented by
two combining two feature groups, the top two SVM models
are both implemented by integration of profile and structure
information. The one with the highest AUC combines the
features from PSSM profile and secondary structure (AUC =
0.659) and the second utilizes the HMM profile and intrinsic
disorder (AUC = 0.656). The incorporation of intrinsic
disorder results to an improved AUC. In fact, except for the
SVM model built upon secondary structure and intrinsic
disorder, the other six SVM models improve their AUC values
by 1.2−5.2%, after the inclusion of the intrinsic disorder
information (the gray and black bars of Figure 3). In addition,
since the sequence profile represented by HMM is different
with PSSM, an increment of at least 1.6% in AUC is also
obtained by combining them together. As shown in the darker
gray and black bars in Figure 3, the SVM model further
increase the AUC value to 0.682, by combining all features
together. We therefore implement our ab initio method
SVMpep by employing all the designed features.

4.2. Contributions of the Component Methods to the
Consensus PepBind. We investigate the contributions of the
component methods S-SITE, TM-SITE, and SVMpep to the
consensus method PepBind. Based on if reliable templates (as
judged by their respective confidence scores) could be
detected by S-SITE and TM-SITE, the test set TE639 was
divided into four nonoverlapping subsets (the pie chart in the
middle of Figure 4): STE_164 (both are reliable), STE_196
(only S-SITE is reliable), STE_38 (only TM-SITE is reliable),
and STE_241 (both are not reliable).

Figure 4. Contribution of the component methods to the consensus-based method PepBind. The four subsets STE_164, STE_196, STE_38, and
STE_241, correspond to the 164 proteins with reliable templates derived from both S-SITE and TM-SITE, the 196 (respectively 38) proteins with
reliable templates only derived from S-SITE (respectively TM-SITE), and 241 proteins without any reliable templates, respectively. The left and
the right panels are the AUC and MCC values for all methods, respectively.
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The performance of all methods on these subsets is
presented in Figure 4. When there are reliable templates
from both S-SITE and TM-SITE, i.e., on the subset STE_164,
PepBind benefits from its individuals, by achieving at least
2.1% and 4.1% more AUC and MCC, respectively. When
reliable templates are available for only S-SITE or TM-SITE,
the ab initio component SVMpep always complements to the
corresponding template-based method (S-SITE or TM-SITE)
in AUC/MCC. Thus, PepBind was improved by 7.9%
(respectively 10.5%) higher AUC and 2.1% (respectively
1.2%) higher MCC on the subset STE_196 (respectively
STE_38). When no reliable templates are available for both
methods, the ab initio predictor SVMpep is more accurate than
both S-SITE and TM-SITE on the subset STE_241, with at
least 13.3% and 35.6% higher AUC and MCC, respectively.
The combination of these three methods contributes to 67.1%
improvement in MCC for the consensus method PepBind.
These data confirm that the three component methods are
complementary to each other. When reliable templates are
available, template-based methods S-SITE and TM-SITE have
higher contribution to PepBind. On the contrary, when no
reliable templates are detected, the ab initio method SVMpep
contributes more to PepBind.
4.3. Comparison with the Baseline Method REpep

and the General-Purpose Method COACH. Evolutionary
conservation is usually an indicator for the functionally
important residues. We employ the relative entropy (RE)
derived from PSSM to measure the conservation and infer the
peptide-binding residues based on the RE values for each
residue. This baseline method is named as REpep. We also
compared our methods with the general-purpose template-
based method COACH.15

The results are summarized in Table 1. We can see that the
prediction by REpep is almost random in terms of MCC value,
though its AUC value is about 0.6. Contrarily, the method
COACH performs better with ∼0.65 AUC and 0.25 MCC on
both the training and the test sets. On the training set TR640,
the consensus method PepBind outperforms COACH with
17% and 30% higher AUC and MCC, respectively. On the test

set TE639, the improvement increases to 19% and 42% in
AUC and MCC, respectively.

4.4. Comparison with Existing Predictors of Peptide-
Binding Residues. Most recently, a sequence-based method
SPRINT-Seq10 and a structure-based method SPRINT-Str9

were developed for the peptide-binding residue prediction.
Both of them were shown to outperform other methods. We
thus compared them with SVMpep and PepBind on the test
data sets TE80 and TE125, where TE80 is a subset of TE125.
Since the TE125 set comprises 24 sequences from our training
set TR640, we retrained SVMpep and PepBind by replacing
the training set TR640 with SPRINT-Str’s training set for fair
comparison. The updated SVMpep and PepBind methods
were then assessed on the test sets TE80 and TE125.
Note that disorder information is used in our methods. It

may be unfair to compare with the method SPRINT-Str on the
fully disordered proteins (FDPs), which are intrinsically
disordered, but with induced folding through binding to
peptides. We checked how many FDPs exist in the training and
test sets based on the disorder predictions from IUPred. Here a
protein is defined as an FDP if more than 90% of its residues
are predicted as disordered. It turns out that there are only four
FDPs in SPRINT-Str’s training set and none in the test sets
TE125 and TE80. This is anticipated because all data sets used
here were directly obtained from the work of SPRINT-Str and
SPRINT-Seq. Thus, it should be fair to make comparisons on
the data sets TE125 and TE80.
The results are summarized in Table 3, where the data for

other methods were cited from previously published results of
SPRINT-Str. It is of interest to compare SVMpep with
SPRINT-Seq, as both are sequence-based methods and do not
use templates. SPRINT-Seq was trained on a balanced data set,
by randomly selecting the same number of nonbinding
residues as binding residues. Following this sampling
procedure, we first generated a balanced set from TE80
(denoted by BTE80) and next evaluated SVMpep on this set.
The results show that SVMpep achieves 7.6% higher AUC but
6.8% lower MCC, compared to the method SPRINT-Seq. The
lower binary predictive performance can be explained by the

Table 3. Comparison with Other Methodsa

data set method AUC MCC Rec Pre

Te125 Sprint-Seq 0.680 0.200 0.210 Na
Sprint-Str 0.780 0.290 0.240 Na
TM-Site 0.600 0.207 0.212 0.284
S-Site 0.699 0.310 0.328 0.367
SVMpep 0.770 0.340 0.196 0.654
PepBind 0.793 0.372 0.344 0.469

Te80 Sprint-Seq* 0.692 0.131 0.639 0.089
Sprint-Seq 0.680 Na Na Na
TM-Site 0.597 0.195 0.208 0.259
S-Site 0.660 0.270 0.290 0.320
SVMpep 0.745 0.298 0.157 0.626
PepBind 0.758 0.337 0.316 0.425

Bte80 Sprint-Seq* 0.694 ± 0.006 0.296 ± 0.012 0.639 ± 0.001 0.653 ± 0.005
Sprint-Seq 0.711 ± 0.013 0.326 ± 0.005 0.642 ± 0.015 Na
TM-Site 0.595 ± 0.004 0.261 ± 0.004 0.208 ± 0.001 0.850 ± 0.025
S-Site 0.658 ± 0.003 0.344 ± 0.005 0.29 ± 0.001 0.890 ± 0.008
SVMpep 0.747 ± 0.005 0.276 ± 0.004 0.157 ± 0.001 0.964 ± 0.010
PepBind 0.761 ± 0.006 0.393 ± 0.008 0.325 ± 0.001 0.956 ± 0.005

aSPRINT-Seq and SPRINT-Str mean the results on the test set were cited from the corresponding publications. SPRINT-Seq* represents the
method re-implemented by us.
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design of SVMpep, which was trained on the original
unbalanced data set and for real-world application. Actually,
the evaluations on TE80 and TE125 both reveal that SVMpep
achieves 7.7% higher AUC and 70% higher MCC than
SPRINT-Seq. The ROC curve of SVMpep is also over the
curve of SPRINT-Seq on the TE125 set (see Supporting
Figure S3). These data suggest that SVMpep outperforms
SPRINT-Seq for the prediction of natural peptide-binding
residues. This benefits from the training strategy with the full
set of nonbinding residues and the utilization of intrinsic
disorder features. From Table 3, it is interesting to see that the
template-program S-SITE outperforms SPRINT-Seq on the
TE125 set, by achieving at least 0.02, 0.11, 0.12, and 0.37
higher AUC, MCC, Rec, and Pre, respectively. This further
reflects that SPRINT-Seq does not work well on the original
unbalanced data set.
The prediction of peptide-binding residues was improved by

the recent structure-based method SPRINT-Str. Table 3 shows
that SVMpep has 0.01 less AUC but 0.05 more MCC than this
method on the independent test set TE125. Supporting Figure
S3 shows that the ROC curve of SVMpep is slightly over the
curve of SPRINT-Str when the FP-rate is ≤25%. These data
suggest that our sequence-based method SVMpep can even
compete with the latest structure-based method SPRINT-Str,
especially for the low FP-rate region. In addition, the
consensus-based method PepBind significantly outperforms
the methods SPRINT-Seq and SPRINT-Str on the independ-
ent test sets TE80 and TE125. Specifically, Table 3 shows that
the AUC and MCC of PepBind is 0.07 higher than and 2.41
times to the corresponding values of SPRINT-Seq on the
TE80 set. On the TE125 set, PepBind also performs better
than both SPRINT-Seq and SPRINT-Str, with the improve-
ment of AUC, MCC, and Rec of 1.7−16.6%, 28.3−86.0%, and
43.3−63.8%, respectively. Supporting Figure S3 suggests that
the ROC curve of PepBind is over the curve of SPRINT-Str
with a relatively large margin for the region of FP-rate ≤ 50%
and is consistently above the curve of SPRINT-Seq.
To summarize, both the ab initio predictor SVMpep and the

consensus-based method PepBind provide accurate prediction
for the identification of peptide-binding residues, no matter the
structure state of the query proteins. Furthermore, the
consensus method PepBind outperforms the existing methods
SPRINT-Seq and SPRINT-Str with a large margin. The
success of the consensus-based method PepBind is attributed
to the introduction of intrinsic disorder in its ab initio
individual SVMpep, and the integration of this method with
the two template-based algorithms S-SITE and TM-SITE.

5. CONCLUSIONS
We developed two sequence-based methods for accurate
prediction of peptide-binding residues. The first is a novel ab
initio method SVMpep by using a comprehensive set of
designed features from intrinsic disorder, predicted secondary
structure and two sequence profiles. Interestingly, the intrinsic
disorder information is a powerful indicator, especially when
incorporating it into the profile information. The inclusion of
intrinsic disorder in the ab initio method SVMpep results to an
enhanced accuracy. The second is a consensus method
PepBind, which combines SVMpep with two template-based
methods S-SITE and TM-SITE. As shown in our assessments,
PepBind significantly outperforms both the sequence-based
method SPRINT-Seq and the structure-based method
SPRINT-Str. The success is attributed to the consideration

of intrinsic disorder in SVMpep, and the combination with two
complementary template-based methods S-SITE and TM-
SITE.
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