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Supplementary Materials 

 

Supplement Text 1. Performance of trRosettaX2 on protein static structure prediction 

Architecture of trRosettaX2. The trRosettaX2 architecture is primarily inspired by AlphaFold2 

(AF2), but several modifications were made to optimize performance under limited computational 

resources, which is summarized in Table S1. First, we introduced an MSA-based language model 

ESM-MSA 1, which was pretrained on the MSAs of UniRef50 sequences, to generate an initial MSA 

embedding and 2D attention maps. Second, to accommodate the constraints of GPU memory (A100 

40GB), we utilize Direct Coupling Analysis (DCA) scores for embedding the "extra MSA" rather 

than relying on transformer blocks. Third, observing that the pure transformer network struggles to 

converge with a "batch size=1" configuration, we introduced the multi-scale convolutional neural 

network Res2Net (R2N) 2 to assist attention-based triangle updates in the Evoformer. This modified 

module, termed trFormer (Fig. S1a), combines the strengths of transformers and convolutional 

networks—leveraging the former for global topology modeling and the latter for capturing local 

details. Notably, we only use 12 trFormer blocks, a significant reduction from the 48 Evoformer 

blocks used in AlphaFold2. 

During inference, the input MSA is transformed into two representations: the MSA 

representation (i.e., the MSA embedding generated by ESM-MSA) and the pair representation 

(including the direct couplings derived from MSA and the attention maps from ESM-MSA). These 

two representations are then iteratively updated by 12 trFormer blocks. The first row of the updated 

MSA representation, along with the full pair representation, is fed into the structure module to 

predict the full-atom 3D structures. 

The loss function of trRosettaX2 consists of several independent items, including the frame-

aligned-point-error (FAPE) loss ℒி஺௉ா, the 2D geometries loss ℒଶ஽, the torsion loss ℒ௧௢௥௦௜௢௡, the 

pLDDT loss ℒ௣௅஽஽், the clash loss ℒ௖௟௔௦௛ , and the bond loss ℒ௕௢௡ௗ. In total, the loss function 

can be written as: 

trX2 FAPE 2D torsion plddt clash bond0.5 0.05 0.1 0.2                 (S1) 

 The training of trRosettaX2 is performed on a single A100 40GB GPU and takes around 10 

days, using the training set consisting of 14,275 protein crystal structures introduced in Methods. 
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Performance of trRosettaX2 for static structure prediction. To validate the effectiveness of the 

above modifications, we trained and evaluated several model variants on 91 domains from the 

CASP14 experiments. The evaluation is based on the average TM-score on the CASP14 dataset, 

using trRosettaX_FM (trX_FM; the template-free version of trRosettaX), RoseTTAFold (RF; 

the pyRosetta version), and AlphaFold2 (AF2) as reference models. During prediction, all 

models use the same MSA as input and do not rely on structural templates.  

According to Fig. S1b, directly adopting the Evoformer architecture performs poorly, with 

an average TM-score of 0.576 on the CASP14 domains, which is even lower than the Res2Net-

based trX_FM. This reflects the incompatibility between pure transformer networks and the 

training configuration we employed under limited resources (e.g., batch size of 1 and only 12 

blocks). However, by incorporating Res2Net with the transformer (i.e., trFormer), the model's 

average TM-score significantly improves by 27.5%, surpassing trX_FM by 11.6%. Training 

with binary-sub-sampling3 further increases the TM-score by approximately 2.5%, 

outperforming RF. With the introduction of ESM-MSA representations, the TM-score improves 

again by about 4%. Finally, using the same input (i.e., MSA), trX2 achieved an average TM-

score of 0.781, 18.7% higher than trX_FM and 5.8% higher accuracy than RF. Additionally, the 

trX2 performance is competitive with AF2 (TM-score 0.781 vs 0.843), despite using fewer 

parameters (0.3B vs 0.9B) and computational resources (1 A100 GPU vs 128 TPUv3 cores). 

These results illustrate the effectiveness of the modification to accommodate the limited 

computational resources. On the 94 domains from CASP15, we can also observe a similar 

comparison (Fig. S1c). trX2 represents a good trade-off of modeling accuracy and 

parameters/training cost compared to other state-of-the-art methods, further demonstrating its 

efficiency as a static structure prediction method. 
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Table S1 | Methodological comparison between trX2, AF2, and RF.  

Methods Approach 

Neural 

network 

architecture 

Number of 

parameters 

Training 

resources 
Training time 

trRosettaX2 
End-to-

end/two-steps 

R2N-

enhanced 

transformer  

(trFormer, 

12 blocks) 

30 M 
1 A100 40GB 

GPU 
~ 10 days 

AlphaFold2 End-to-end 

Evoformer 

(48 blocks) 

+structure 

module 

(8 blocks) 

93 M 
128 TPU v3 

cores 
~ 2 weeks 

RoseTTAFold 

(pyRosetta) 
Two-steps 

3-track 

transformer  

(13 blocks) 

130 M 

8 V100 32GB 

GPUs 
~ 4 weeks 

RoseTTAFold 

(e2e) 
End-to-end 

3-track 

transformer  

(13 blocks) 

+SE3-

transformer 

(2 layers) 

137 M 
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Table S2 | Information of the apo-holo proteins, along with RMSD and TM-score between apo and 

holo states.  

Apo state Holo state RMSD(Å) TM-score trX2-D 

sample 

number 
PDB ID Release date PDB ID Release date 

between apo 

and holo 

between apo 

and holo 

2LAO 1993-02-25 1LAH 1993-10-06 4.75 0.70 325 

1NTR 1994-09-16 1KRX 2002-01-10 4.55 0.63 276 

1CFC 1995-08-02 5DOW 2015-09-11 9.25 0.38 291 

1MUT 1995-09-14 1PUN 2003-06-25 4.98 0.58 212 

1LIP 1995-09-21 1JTB 1996-12-03 3.29 0.66 162 

4AKE 1995-12-29 2ECK 1996-12-16 6.95 0.69 306 

1SYM 1996-05-29 1XYD 2004-11-09 6.69 0.54 204 

1AEL 1996-07-30 1URE 1996-06-17 2.69 0.77 230 

2CJO 1997-02-06 1ROE 1995-11-24 4.55 0.58 216 

2RCS 1997-05-14 1AJ7 1997-05-15 7.21 0.59 351 

1URP 1998-04-03 2DRI 1994-09-23 4.20 0.72 281 

1SKT 1998-04-06 1TNQ 1995-07-07 7.19 0.54 165 

1EX6 2000-05-01 1EX7 2000-05-01 4.37 0.78 281 

1F3Y 2000-06-06 1JKN 2001-07-12 5.08 0.79 234 

1FMF 2000-08-17 1ID8 2001-04-04 4.74 0.61 264 

1GH1 2000-10-29 1CZ2 1999-09-01 3.04 0.68 173 

1IJA 2001-04-25 2KID 2009-05-01 4.54 0.79 332 

1JFJ 2001-06-20 1JFK 2001-06-21 14.73 0.47 227 

1K2H 2001-09-27 1ZFS 2005-04-20 6.59 0.49 197 

1GUD 2002-01-24 1RPJ 1999-02-04 4.45 0.72 409 

1MO7 2002-09-08 1MO8 2002-09-08 4.93 0.79 297 

1ORM 2003-03-14 1QJ8 1999-06-23 6.13 0.51 292 

1WD7 2004-05-12 1WCW 2004-05-06 4.12 0.71 435 

1W4U 2004-07-29 1UR6 2003-10-27 3.01 0.75 262 

1VR6 2005-02-14 1RZM 2003-12-24 10.10 0.81 243 

1Z15 2005-03-03 1Z17 2005-03-03 6.45 0.66 333 

2CG7 2006-02-27 2CG6 2006-02-27 6.25 0.55 196 

2NLN 2006-10-20 1RRO 1992-08-27 3.90 0.63 196 

2UZ5 2007-04-25 2VCD 2007-09-20 3.37 0.78 201 

2JU3 2007-08-14 2JU8 2007-08-15 3.17 0.73 160 

2JWW 2007-10-25 1RTP 1993-05-14 2.79 0.73 191 

2K43 2008-05-28 2K8R 2008-09-22 3.93 0.73 198 

2KQ2 2009-10-24 2KW4 2010-03-31 14.14 0.28 325 

2KXL 2010-05-10 2K0G 2008-02-02 6.09 0.66 254 

2L50 2010-10-22 2L51 2010-10-22 4.56 0.73 196 

2LKC 2011-10-10 2LKD 2011-10-10 7.47 0.72 244 

4LP5 2013-07-15 4P2Y 2014-03-05 11.69 0.74 315 
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Table S3 | Impact of the different components on the structure modeling accuracy on the apo-holo 

benchmark. 

Ablation model 
NMR fine-

tuning 

Heuristic 

iteration 

Model 

integration 

RMSD 

against 

apo state 

(Å) 

RMSD 

against holo 

state (Å) 

1) baseline (trX2)    5.00 4.77 

2) baseline + NMR training set √   4.94 4.17 

3) baseline + iteration  √  4.52 4.16 

4) baseline + NMR training set + iteration √ √  4.53 3.79 

5) integration of (1) and (2)   √ 4.37 3.84 

6) integration of (3) and (4) (trX2-D) √ √ √ 3.98 3.37 
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Table S4 | Comparison of AF2, AF-Cluster, AFsample2, trX2, and trX2-D on apo and holo proteins. 

Apo state RMSD against apo state(Å) Holo state RMSD against holo state(Å) 

PDB ID AF2 
AF- 

Cluster 

AFsam 

ple2 
trX2 trX2-D PDB ID AF2 

AF- 

Cluster 

AFsam 

ple2 
trX2 trX2-D 

2LAO 4.62 1.95  0.92 2.91 2.83 1LAH 0.41  0.51  0.47 3.00 1.59 

1NTR 4.14 4.17  4.28 4.40 4.10 1KRX 3.25  3.25  3.31 3.22 2.92 

1CFC 5.15 5.51  4.47 7.61 5.78 5DOW 5.73  2.62  4.34 8.41 6.72 

1MUT 3.68 3.63  3.66 3.96 3.75 1PUN 3.75  3.68  3.82 4.26 3.90 

1LIP 1.57 1.52  1.54 2.09 1.88 1JTB 2.91  2.77  2.84 2.82 2.63 

4AKE 5.91 1.84  1.61 3.59 3.25 2ECK 0.79  1.92  1.98 5.10 1.79 

1SYM 5.50 4.68  3.91 5.06 4.94 1XYD 1.96  5.13  2.06 3.48 3.43 

1AEL 2.49 2.54  2.44 2.77 2.49 1URE 1.50  1.59  1.49 1.76 1.71 

2CJO 1.29 1.48  1.38 1.72 1.34 1ROE 4.32  4.38  4.25 4.26 4.21 

2RCS 5.06 3.95  1.84 7.57 3.43 1AJ7 1.96  8.23  2.19 9.50 4.60 

1URP 3.72 0.79  0.84 2.75 2.47 2DRI 0.51  0.57  0.48 2.33 1.12 

1SKT 4.40 2.21  2.78 3.93 2.87 1TNQ 3.00  3.29  2.98 4.00 3.80 

1EX6 0.88 1.59  1.07 3.10 3.00 1EX7 1.04  1.70  1.55 2.07 1.63 

1F3Y 3.01 3.62  2.74 4.32 3.80 1JKN 2.11  2.43  1.94 2.68 2.47 

1FMF 1.84 2.28  1.84 2.49 2.19 1ID8 4.56  4.48  4.39 4.40 4.15 

1GH1 2.28 1.98  2.10 2.18 1.99 1CZ2 2.65  2.55  2.57 2.53 2.48 

1IJA 3.15 3.97  2.84 5.92 6.18 2KID 1.79  1.56  1.72 6.45 4.76 

1JFJ 13.49 11.71  13.18 10.32 10.23 1JFK 12.86  12.92  12.91 11.52 6.38 

1K2H 6.43 4.91  4.80 5.32 5.37 1ZFS 2.14  2.37  2.03 3.35 3.14 

1GUD 3.63 1.07  0.98 3.58 3.35 1RPJ 0.92  1.18  1.11 2.90 2.77 

1MO7 3.77 3.94  3.90 5.51 4.23 1MO8 3.40  3.51  3.24 4.67 4.04 

1ORM 5.68 6.17  5.57 5.26 4.82 1QJ8 0.95  0.84  0.70 2.10 1.49 

1WD7 1.99 4.72  4.49 14.24 4.33 1WCW 0.81  1.20  1.03 14.20 1.52 

1W4U 2.24 2.24  2.21 2.26 2.04 1UR6 2.16  2.11  2.13 2.46 2.02 

1VR6 1.38 6.27  1.65 6.17 4.11 1RZM 9.13  6.86  0.80 4.51 4.2 

1Z15 6.07 5.25  4.16 4.74 4.50 1Z17 0.60  0.87  0.73 2.64 1.63 

2CG7 0.93 3.33  1.08 6.45 2.16 2CG6 6.22  3.66  3.11 9.57 2.52 

2NLN 3.91 3.95  3.86 3.61 3.43 1RRO 0.64  0.73  0.59 1.11 1.13 

2UZ5 3.01 2.67  3.07 3.10 2.96 2VCD 1.38  1.57  1.40 1.86 1.50 

2JU3 2.68 2.70  2.74 2.68 2.52 2JU8 1.76  1.79  1.77 1.71 1.71 

2JWW 2.63 2.61  2.54 2.85 2.82 1RTP 0.38  0.50  0.44 1.42 1.45 

2K43 2.76 3.04  2.81 2.80 2.67 2K8R 4.01  4.17  4.05 3.68 3.39 

2KQ2 8.90 9.49  8.92 9.67 8.37 2KW4 10.70  7.14  9.50 9.13 8.54 

2KXL 4.70 2.63  2.61 3.23 2.74 2K0G 3.32  3.20  3.23 3.88 3.23 

2L50 3.09 4.58  3.02 10.13 5.10 2L51 3.27  5.30  3.52 9.88 4.70 

2LKC 7.32 7.05  7.50 7.64 6.01 2LKD 3.98  3.75  3.92 5.05 4.56 

4LP5 9.16 17.47  5.93 8.94 9.18 4P2Y 7.14  16.96  7.04 10.53 10.94 

Average 4.12 4.15 3.39 5.00 3.98 Average 3.19 3.55 2.85 4.77 3.37 
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Table S5 | Information of 20 paired dual-conformation proteins from the Cfold benchmark set, the 

definitions of Fold1 and Fold2 are provided by Chakravarty D, et al 4. 

Fold1 state Fold2 state RMSD(Å) TM-score trX2-D 

sample 

number 
PDB ID Release Date PDB ID 

Release 

Date 

between Fold1 

and Fold2 

between Fold1 

and Fold2 

1RLM 2003-11-26 2HF2 2006-06-22 3.58 0.79 299 

2BBW 2005-10-17 2AR7 2005-08-19 5.16 0.75 301 

2IEY 2006-09-19 2IEZ 2006-09-19 5.49 0.70 234 

2NXE 2006-11-17 2ZBP 2007-10-26 11.75 0.78 368 

2V9R 2007-08-25 2V9Q 2007-08-25 3.87 0.67 287 

3BIS 2007-11-30 3BIK 2007-11-30 3.86 0.73 287 

3PIL 2010-11-07 3PIM 2010-11-07 7.39 0.74 221 

3T9L 2011-08-03 4A3P 2011-10-03 4.92 0.61 247 

3UV5 2011-11-29 7L6X 2020-12-24 11.97 0.57 469 

5JGK 2016-04-20 5JGL 2016-04-20 6.63 0.68 252 

5O37 2017-05-23 5O2K 2017-05-21 6.81 0.58 271 

5OVZ 2017-08-30 4P0I 2014-02-21 4.58 0.67 412 

6DZX 2018-07-05 6CVA 2018-03-27 3.91 0.73 279 

6HNI 2018-09-15 6HNK 2018-09-15 4.31 0.75 380 

6P8R 2019-06-07 6P8O 2019-06-07 6.15 0.58 203 

6SVF 2019-09-18 6GGP 2018-05-03 5.68 0.58 354 

6UHI 2019-09-27 6UHS 2019-09-27 3.76 0.68 205 

6ZJB 2020-06-28 6ZJD 2020-06-28 6.74 0.76 315 

7RDT 2021-07-11 7RDS 2021-07-11 8.75 0.51 258 

8DP6 2022-07-15 8DP7 2022-07-15 4.40 0.72 499 
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Table S6 | Comparison of Cfold (dropout), Cfold (noise), trX2, and trX2-D on 20 dual-conformation 

proteins. 

Fold1 

state 
RMSD against Fold1 state(Å) 

Fold2 

state 
RMSD against Fold2 state(Å) 

PDB ID 
Cfold 

(dropout) 

Cfold 

(cluster) 
trX2 trX2-D PDB ID 

Cfold 

(dropout) 

Cfold 

(cluster) 
trX2 trX2-D 

1RLM 1.02  1.04  1.51  1.53  2HF2 3.26  3.18  3.84  2.97  

2BBW 3.87  3.50  2.93  2.56  2AR7 2.64  2.53  6.44  3.97  

2IEY 15.99  15.91  15.98  15.61  2IEZ 17.50  17.46  17.48  17.01  

2NXE 5.79  5.78  4.86  4.50  2ZBP 7.63  6.40  10.36  3.77  

2V9R 2.41  2.17  2.46  2.22  2V9Q 4.92  4.28  5.20  3.67  

3BIS 5.79  3.97  4.65  2.54  3BIK 3.35  2.25  3.61  3.07  

3PIL 1.62  1.69  3.47  2.49  3PIM 6.95  6.93  7.76  7.12  

3T9L 3.17  2.95  3.11  3.04  4A3P 1.77  1.56  4.09  3.55  

3UV5 12.28  11.90  4.13  3.71  7L6X 1.45  1.43  13.69  3.40  

5JGK 1.22  1.24  1.93  1.93  5JGL 5.82  5.98  7.51  6.65  

5O37 1.25  1.28  1.86  1.74  5O2K 6.18  5.20  5.47  3.37  

5OVZ 1.23  1.13  1.85  1.82  4P0I 3.06  3.05  3.83  3.47  

6DZX 1.29  1.21  1.93  1.93  6CVA 2.95  2.95  3.71  3.59  

6HNI 1.58  1.13  1.66  1.65  6HNK 4.05  3.76  4.04  3.74  

6P8R 1.64  1.41  2.69  2.58  6P8O 4.42  4.44  5.54  4.61  

6SVF 0.98  1.00  1.57  1.35  6GGP 5.20  4.93  5.72  5.12  

6UHI 3.76  3.81  2.64  2.53  6UHS 3.20  3.31  3.64  2.31  

6ZJB 5.07  4.83  1.66  1.53  6ZJD 1.96  1.91  6.07  3.42  

7RDT 1.52  1.50  1.80  1.79  7RDS 8.43  8.47  8.14  8.09  

8DP6 2.17  1.54  2.21  1.99  8DP7 1.52  1.60  2.70  2.20  

Average 3.68 3.45 3.24 2.95 Average 4.81 4.58 6.44 4.75 
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Table S7 | Comparison between the input-driven strategies and trX2-D. 

Strategy Key mechanism Advantages Disadvantages 

Input-driven 

(AF-Cluster, 

AFsample2) 

Perturbing input MSAs 

(clustering or 

subsampling). 

- Rapid end-to-end inference via 

GPU acceleration. 

- Inherits high baseline accuracy 

from the AF2 architecture. 

- Indirect output control limits the 

exploration of conformational space. 

- Lacks mechanistic interpretability of 

the conformational transitions. 

- Relies on the rich evolutionary 

information for effective 

clustering/sampling. 

Output-driven 

(trX2-D) 

Iteratively sampling 

predicted 2D 

geometries + energy 

minimization. 

- Direct modulation of predicted 

geometries enables more effective 

capturing of alternative states. 

- Provides physical interpretability 

via energy landscapes. 

- Robust with sparse evolutionary 

information. 

 

- Accuracy limited by baseline model. 

- Lower throughput due to iterative 

CPU-based energy minimization. 

- Relies on multi-state signals in 

predicted geometries. 
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Table S8 | Analysis of inference times. This comparison was performed on 20 targets with lengths 

ranging from 100 to 200 residues from the apo-holo dataset. The experiment is performed on a 

single CPU core. 

PDB ID 
Sequence 

length 

Geometry prediction 

time (s) 

Time per Rosetta 

iteration (s) 
Total time(s) 

1RRO 108 17.68 305.79 323.47 

1RTP 109 17.88 319.41 337.29 

1MUT 129 79.27 400.57 479.84 

1URE 131 38.24 398.86 437.10 

1QJ8 148 41.21 436.70 477.91 

1EX7 186 146.35 620.82 767.16 

1F3Y 165 118.77 534.31 653.08 

1FMF 137 33.18 408.65 441.83 

1IJA 148 36.20 452.53 488.73 

1JFJ 134 88.00 328.91 416.91 

1KRX 124 90.73 403.59 494.32 

1W4U 147 103.76 487.06 590.82 

2JU8 127 28.65 389.34 417.99 

2VCD 137 92.03 456.83 548.86 

2K0G 142 94.92 407.02 501.93 

2K8R 133 87.61 435.21 522.82 

2KQ2 147 55.38 486.69 542.07 

2L51 102 17.89 219.95 237.85 

2LKD 178 137.83 546.16 683.98 

5DOW 146 101.87 349.58 451.45 

Average 138.9 71.37 419.40 490.77 
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Table S9 | Information of 31 NMR proteins, along with the maximum pairwise RMSD(Å) and the 

minimum pairwise TM-score. 

PDB ID Release date 
Maximum 

pairwise RMSD(Å) 

Minimum pairwise 

TM-score 

trX2-D sample 

number 

1BZK 1998-11-01 8.94 0.24 141 

1N0Z 2002-10-15 1.76 0.26 128 

1W9R 2004-10-15 8.28 0.66 190 

2A7Y 2005-07-06 2.59 0.73 150 

2FFT 2005-12-20 36.54 0.25 162 

2EOD 2007-03-29 1.79 0.72 156 

2JU4 2007-08-14 13.02 0.08 167 

2RNN 2008-01-30 9.69 0.83 109 

2K4F 2008-06-07 12.98 0.22 148 

2K9P 2008-10-21 7.62 0.48 194 

2KEB 2009-01-28 2.96 0.74 183 

2WCY 2009-03-17 3.24 0.79 227 

2KLZ 2009-07-12 2.37 0.42 111 

2KSD 2010-01-02 8.59 0.15 167 

2KWQ 2010-04-15 2.91 0.79 157 

2L7S 2010-12-21 14.17 0.41 132 

2L8E 2011-01-11 6.58 0.67 131 

2LFP 2011-07-07 3.43 0.78 233 

2LTF 2012-05-22 10.66 0.89 134 

2LXW 2012-09-03 2.01 0.74 145 

2M2F 2012-12-20 2.42 0.42 222 

2M3E 2013-01-17 2.54 0.79 125 

2M6M 2013-04-06 2.66 0.77 207 

2M9U 2013-06-19 3.40 0.73 88 

2MXV 2015-01-16 1.33 0.64 156 

2NDJ 2016-06-09 19.13 0.27 203 

5KZO 2016-07-25 5.77 0.57 149 

5M4T 2016-10-19 10.62 0.61 181 

5NAM 2017-02-28 0.79 0.75 132 

6NU4 2019-01-30 20.93 0.31 198 

6UCH 2019-09-16 0.53 0.66 112 

 

 

  



12 

 

Table S10 | Summary of data redundancy removal strategies for 3 benchmark sets. 

Benchmark dataset Size Redundancy removal strategy 

Apo-holo pairs 37 

Sequences sharing >50% sequence identity with these 

test targets were excluded from the training and fine-

tuning set 

Cfold dual-conformation 

proteins 
20 

Filtered with a 40% sequence identity threshold 

against the training and fine-tuning set. 

NMR dynamic proteins 31 
Proteins sharing >30% sequence identity relative to 

the training and fine-tuning dataset were excluded. 
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Fig. S1 | Architecture and performance of trRosettaX2. (a) architecture of a trFormer block. (b) 

average TM-scores on CASP14 domains for trRosettaX_FM, trRosettaX2 and its variants, 

RoseTTAFold, and AlphaFold2. Error bars represent one-fifth of the standard deviation. (c) TM-

score distributions on CASP15 domains. 
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Fig. S2 | Illustration of one iteration of the heuristic iterative sampling process in trX2-D.  
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Fig. S3 | TM-score comparison of trX2-D on proteins with apo and holo states. (a) box plots 

illustrating the TM-score distribution between predicted and native structures for AF2, AF-Cluster, 

AFsample2, trX2, and trX2-D, stratified by apo and holo states. Mean TM-scores are indicated by 

black diamond. (b, c) head-to-head TM-score comparison between trX2-D and trX2 for the apo 

state (b) and holo state (c). (d, e) average TM-scores of trX2 and trX2-D predictions for the apo (d) 

and holo (e) states, grouped by the RMSDapo-holo. 
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Fig. S4 | Comparison of RMSDs relative to native apo/holo states for the predicted 

conformations by trX2 (a) and trX2-D (b). Point size is proportional to the perpendicular distance 

to the diagonal. 
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Fig. S5 | Correlation between native state divergence (RMSDapo-holo) and trX2 prediction 

accuracy (the minimum RMSD to any state).  
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Fig. S6 | Head-to-head RMSD comparison between trX2 (NMR) and trX2 for the apo state 

(a) and the holo state (b). 
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Fig.S7 | Comparison of MSA depths. Bar chart quantifying the mean MSA depth for raw 

sequences (blue) versus clustered sequences (orange) in the apo-holo and NMR datasets. The value 

for "AF-Cluster MSAs" is calculated as the average depth of the deepest MSA generated by AF-

Cluster for each target across the respective datasets. 
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Fig. S8 | Comparison of the ensemble structural quality. (a) head-to-head comparisons of 

RMSDmean for trX2-D versus AF2, AF-Cluster, AFsample2, and trX2. (b) bar chart illustrating the 

average RMSDmean distributions for different methods. Unlike the degradation trend observed in 

AF2-based sampling, trX2-D maintains performance comparable to trX2.  
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Fig. S9ௗ| Per‑residue RMSF profiles for three challenging cases shown in Fig. 6. 

Root‑mean‑square fluctuations (RMSF) are plotted against residue index for the native ensemble 

(grey), AlphaFold2 (red), AFsample2 (orange), and trX2‑Dynamics (blue). Compared to AF2 and 

AFsample2, trX2‑Dynamics captures broader structural diversity with RMSF more closely 

matching the native flexibility.  
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Fig. S10 | Performance of trX2-D and other methods on NMR backbone dynamics. (a) head-

to-head comparisons of Pearson correlation (r) of S2
ensemble for trX2-D versus AF2, AF-Cluster, 

AFsample2, and trX2; points above the diagonal denote trX2-D superiority. (b) boxplots illustrating 

the distributions of correlation coefficients (r) for different methods on the NMR dataset. 
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Fig. S11 | RDC analysis for the computational ensembles. (a, b) per-residue absolute error 

heatmaps (left) and global Q-factors (right) for targets 2M3E (a) and 2M6M (b). Lower Q-factors 

denote better agreement with experimental data. (c) visualization of experimental and predicted 

ensembles for 2M6M. The observed discrepancies highlight a common limitation across all methods 

in accurately capturing the precise spatial orientation of flexible fluctuations relative to the protein 

core.

trX2
A

F2
A
F -Clu ster

trX2-D

A
Fsam

pl e2

trX2

AF2

AF-
Cluster

trX2-D

AFsample2

trX2

AF2

AF-
Cluster

trX2-D

AFsample2

residue index

residue index

q
u

a
li

ty
 f

a
c

to
r 

(Q
)

A
b

s
o

lu
te

 E
rr

o
r 

(H
z)

A
b

s
o

lu
te

 E
rr

o
r 

(H
z

)

q
u

a
li

ty
 f

a
c

to
r 

(Q
)

a

b

trX2
AF2

AF
-C

lu st er

trX2-D

AFsam
ple2

trX2native trX2-DAF2 AF-Cluster AFsample2

c



24 

 

 
Fig. S12 | Impact of energy filtering on trX2-D performance on NMR benchmark set. 

Comparison of trX2-D results before and after energy-based filtering for RMSDrec (a) and 

RMSDmean (b). Notably, the filtering step improves the ensemble quality for 90.3% (28/31) of the 

targets. 
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Fig. S13 | Comparison between trX2-D and trX2-Cluster. (a) violin plots comparing the 

distribution of RMSD values between predicted and native structures for trX2-Cluster and trX2-D 

in both apo and holo states. Individual data points are overlaid on the violins. (b, c) head-to-head 

comparisons of RMSD between trX2-D and trX2-Cluster for the apo state (b) and the holo state (c). 
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Fig. S14 | Applying iterative sampling to AF2 with different MSA depths. (a) violin plots 

showing the distribution of RMSD values for AF2 applying the heuristic iterative sampling strategy 

(AF-HIS) with default MSA depth, compared to standard AF2 predictions for both apo and holo 

states. (b) similar violin plots showing the impact of iterative sampling on AF2 predictions generated 

using shallow MSAs, compared to standard shallow MSA AF2 predictions. Individual data points 

are overlaid on all plots. 
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Fig. S15 | Comparison of distance distributions for a representative residue pair in apo and 

holo states. The left panels illustrate the apo (PDB ID 2CG7) and holo (PDB ID 2CG6) structures 

(cartoon representation), highlighting the residue pair and the corresponding distances in blue. The 

right panels present the normalized probability distributions of the distance between this pair 

predicted by trX2(NMR), AF2, and AF2 with subsampled MSA (AF2(shallow)). 
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Fig. S16 | Comparison between AF-Rosetta and AF-HIS. (a) violin plots of RMSD distributions 

relative to native structures for both apo and holo states, with individual data points overlaid. (b, d) 

head-to-head RMSD comparisons for the apo state (b) and the holo state (d). (c, e) average RMSD 

values for the apo state (c) and the holo state (e), grouped by RMSD between native conformations 

(RMSDapo-holo). 
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Fig. S17 | Evaluation of clustering strategies for representative structure selection. (a, b) the 

average RMSD (a) and TM-score (b) of representative structures selected using k-means clustering 

based on different structural similarity metrics (TM-score, RMSD, and inter-Cα distances dେ஑) for 

both apo and holo states. A baseline representing the average performance without clustering is also 

shown. Each error bar represents one-fifth of the standard deviation. 
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Fig. S18 | Examples of apo-holo protein pairs exhibiting significant conformational differences 

despite having high inter-conformation TM-scores. 
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Fig. S19 | Visualizing the impact of Gaussian smoothing on protein structure representation. 

Representative protein structures are shown (a) without and (b), with Gaussian smoothing applied. 

Gaussian smoothing enhances structural regularity and completeness in the heuristic iterative 

process. 
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