Supplementary Materials

Supplement Text 1. Performance of trRosettaX2 on protein static structure prediction
Architecture of trRosettaX2. The trRosettaX2 architecture is primarily inspired by AlphaFold2
(AF2), but several modifications were made to optimize performance under limited computational
resources, which is summarized in Table S1. First, we introduced an MSA-based language model
ESM-MSA !, which was pretrained on the MSAs of UniRef50 sequences, to generate an initial MSA
embedding and 2D attention maps. Second, to accommodate the constraints of GPU memory (A100
40GB), we utilize Direct Coupling Analysis (DCA) scores for embedding the "extra MSA" rather
than relying on transformer blocks. Third, observing that the pure transformer network struggles to
converge with a "batch size=1" configuration, we introduced the multi-scale convolutional neural
network Res2Net (R2N) 2 to assist attention-based triangle updates in the Evoformer. This modified
module, termed trFormer (Fig. Sla), combines the strengths of transformers and convolutional
networks—Ieveraging the former for global topology modeling and the latter for capturing local
details. Notably, we only use 12 trFormer blocks, a significant reduction from the 48 Evoformer
blocks used in AlphaFold2.

During inference, the input MSA is transformed into two representations: the MSA
representation (i.e., the MSA embedding generated by ESM-MSA) and the pair representation
(including the direct couplings derived from MSA and the attention maps from ESM-MSA). These
two representations are then iteratively updated by 12 trFormer blocks. The first row of the updated
MSA representation, along with the full pair representation, is fed into the structure module to
predict the full-atom 3D structures.

The loss function of trRosettaX2 consists of several independent items, including the frame-
aligned-point-error (FAPE) loss Lg,pg, the 2D geometries loss L,p, the torsion 1oss L;orsion, the
pLDDT loss L,;ppr, the clash loss L46n , and the bond loss Lyong. In total, the loss function

can be written as:

EtrXZ = £FAPE + 05£2D + £t0rsion + O'OSEplddt + 0 1Eclash + 0'2£bond (Sl)

The training of trRosettaX?2 is performed on a single A100 40GB GPU and takes around 10

days, using the training set consisting of 14,275 protein crystal structures introduced in Methods.
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Performance of trRosettaX2 for static structure prediction. To validate the effectiveness of the
above modifications, we trained and evaluated several model variants on 91 domains from the
CASP14 experiments. The evaluation is based on the average TM-score on the CASP14 dataset,
using trRosettaX FM (trX FM; the template-free version of trRosettaX), RoseTTAFold (RF;
the pyRosetta version), and AlphaFold2 (AF2) as reference models. During prediction, all
models use the same MSA as input and do not rely on structural templates.

According to Fig. S1b, directly adopting the Evoformer architecture performs poorly, with
an average TM-score of 0.576 on the CASP14 domains, which is even lower than the Res2Net-
based trX FM. This reflects the incompatibility between pure transformer networks and the
training configuration we employed under limited resources (e.g., batch size of 1 and only 12
blocks). However, by incorporating Res2Net with the transformer (i.e., trFormer), the model's
average TM-score significantly improves by 27.5%, surpassing trX FM by 11.6%. Training
with binary-sub-sampling® further increases the TM-score by approximately 2.5%,
outperforming RF. With the introduction of ESM-MSA representations, the TM-score improves
again by about 4%. Finally, using the same input (i.e., MSA), trX2 achieved an average TM-
score of 0.781, 18.7% higher than trX FM and 5.8% higher accuracy than RF. Additionally, the
trX2 performance is competitive with AF2 (TM-score 0.781 vs 0.843), despite using fewer
parameters (0.3B vs 0.9B) and computational resources (1 A100 GPU vs 128 TPUv3 cores).
These results illustrate the effectiveness of the modification to accommodate the limited
computational resources. On the 94 domains from CASP15, we can also observe a similar
comparison (Fig. Slc). trX2 represents a good trade-off of modeling accuracy and
parameters/training cost compared to other state-of-the-art methods, further demonstrating its

efficiency as a static structure prediction method.



Table S1 | Methodological comparison between trX2, AF2, and RF.

Methods

Approach

Neural
network
architecture

Number of

parameters

Training

resources

Training time

trRosettaX?2

End-to-
end/two-steps

R2N-
enhanced
transformer

(trFormer,
12 blocks)

30M

1 A100 40GB
GPU

~ 10 days

AlphaFold2

End-to-end

Evoformer
(48 blocks)
+structure
module
(8 blocks)

93 M

128 TPU v3
cores

~ 2 weeks

RoseTTAFold
(pyRosetta)

Two-steps

3-track
transformer
(13 blocks)

130 M

RoseTTAFold
(e2e)

End-to-end

3-track
transformer
(13 blocks)
+SE3-
transformer
(2 layers)

137 M

8 V100 32GB
GPUs

~ 4 weeks




Table S2 | Information of the apo-holo proteins, along with RMSD and TM-score between apo and

holo states.

Apo state Holo state RMSD(A) TM-score trX2-D
between apo between apo sample
PDB ID Release date PDB ID Release date

and holo and holo number
2LAO 1993-02-25 1LAH 1993-10-06 4.75 0.70 325
INTR 1994-09-16 1KRX 2002-01-10 4.55 0.63 276
1CFC 1995-08-02 SDOW 2015-09-11 9.25 0.38 291
IMUT 1995-09-14 1PUN 2003-06-25 4.98 0.58 212
1LIP 1995-09-21 JTB 1996-12-03 3.29 0.66 162
4AKE 1995-12-29 2ECK 1996-12-16 6.95 0.69 306
1ISYM 1996-05-29 1XYD 2004-11-09 6.69 0.54 204
1AEL 1996-07-30 1URE 1996-06-17 2.69 0.77 230
2CJO 1997-02-06 1ROE 1995-11-24 4.55 0.58 216
2RCS 1997-05-14 1AJ7 1997-05-15 7.21 0.59 351
1URP 1998-04-03 2DRI 1994-09-23 4.20 0.72 281
1SKT 1998-04-06 1TNQ 1995-07-07 7.19 0.54 165
1EX6 2000-05-01 1EX7 2000-05-01 437 0.78 281
1F3Y 2000-06-06 1JKN 2001-07-12 5.08 0.79 234
1FMF 2000-08-17 11D8 2001-04-04 4.74 0.61 264
1GH1 2000-10-29 1CZ2 1999-09-01 3.04 0.68 173
1JA 2001-04-25 2KID 2009-05-01 4.54 0.79 332
1JFJ 2001-06-20 1JFK 2001-06-21 14.73 0.47 227
1K2H 2001-09-27 1ZFS 2005-04-20 6.59 0.49 197
1GUD 2002-01-24 1RPJ 1999-02-04 445 0.72 409
1MO7 2002-09-08 1MO8 2002-09-08 4.93 0.79 297
10RM 2003-03-14 1QJ8 1999-06-23 6.13 0.51 292
1WD7 2004-05-12 1WCW 2004-05-06 4.12 0.71 435
1W4U 2004-07-29 1UR6 2003-10-27 3.01 0.75 262
1VR6 2005-02-14 1RZM 2003-12-24 10.10 0.81 243
1Z15 2005-03-03 1217 2005-03-03 6.45 0.66 333
2CG7 2006-02-27 2CG6 2006-02-27 6.25 0.55 196
2NLN 2006-10-20 1RRO 1992-08-27 3.90 0.63 196
2UZ5 2007-04-25 2VCD 2007-09-20 3.37 0.78 201
2JU3 2007-08-14 2JU8 2007-08-15 3.17 0.73 160
2JWW 2007-10-25 IRTP 1993-05-14 2.79 0.73 191
2K43 2008-05-28 2K8R 2008-09-22 3.93 0.73 198
2KQ2 2009-10-24 2KW4 2010-03-31 14.14 0.28 325
2KXL 2010-05-10 2K0G 2008-02-02 6.09 0.66 254
2L50 2010-10-22 2L51 2010-10-22 4.56 0.73 196
2LKC 2011-10-10 2LKD 2011-10-10 7.47 0.72 244
4LPS 2013-07-15 4P2Y 2014-03-05 11.69 0.74 315




Table S3 | Impact of the different components on the structure modeling accuracy on the apo-holo

benchmark.
RMSD
RMSD
NMR fine- Heuristic Model against
Ablation model against holo
tuning iteration  integration apo state
state (A)
A)

1) Dbaseline (trX2) 5.00 4.77
2) baseline + NMR training set v 4.94 4.17
3) Dbaseline + iteration v 4.52 4.16
4) baseline + NMR training set + iteration v 4.53 3.79
5)  integration of (1) and (2) 437 3.84
6) integration of (3) and (4) (trX2-D) v v v 3.98 3.37




Table S4 | Comparison of AF2, AF-Cluster, AFsample2, trX2, and trX2-D on apo and holo proteins.

Apo state RMSD against apo state(A) Holo state RMSD against holo state(A)
AF- AFsam AF- AFsam
PDB ID AF2 trX2 trX2-D PDB ID AF2 trX2 trX2-D
Cluster ple2 Cluster ple2
2LAO 4.62 1.95 0.92 291 2.83 1LAH 0.41 0.51 0.47 3.00 1.59
INTR 4.14 4.17 4.28 4.40 4.10 1IKRX 3.25 3.25 331 322 2.92
1CFC 5.15 5.51 4.47 7.61 5.78 SDOW 5.73 2.62 4.34 8.41 6.72
IMUT 3.68 3.63 3.66 3.96 3.75 1PUN 3.75 3.68 3.82 4.26 3.90
ILIP 1.57 1.52 1.54 2.09 1.88 1JTB 291 2.77 2.84 2.82 2.63
4AKE 591 1.84 1.61 3.59 3.25 2ECK 0.79 1.92 1.98 5.10 1.79
ISYM 5.50 4.68 391 5.06 4.94 IXYD 1.96 5.13 2.06 3.48 3.43
1AEL 2.49 2.54 2.44 2.77 2.49 1IURE 1.50 1.59 1.49 1.76 1.71
2CJO 1.29 1.48 1.38 1.72 1.34 1ROE 432 438 425 4.26 421
2RCS 5.06 3.95 1.84 7.57 3.43 1AJ7 1.96 8.23 2.19 9.50 4.60
1URP 3.72 0.79 0.84 2.75 247 2DRI 0.51 0.57 0.48 233 1.12
ISKT 4.40 221 2.78 393 2.87 1TNQ 3.00 3.29 2.98 4.00 3.80
1EX6 0.88 1.59 1.07 3.10 3.00 1EX7 1.04 1.70 1.55 2.07 1.63
1F3Y 3.01 3.62 2.74 4.32 3.80 1JKN 2.11 243 1.94 2.68 2.47
1FMF 1.84 228 1.84 2.49 2.19 11D8 4.56 448 4.39 4.40 4.15
1GH1 2.28 1.98 2.10 2.18 1.99 1CZ22 2.65 2.55 2.57 2.53 2.48
1A 3.15 3.97 2.84 592 6.18 2KID 1.79 1.56 1.72 6.45 4.76
1JFJ 13.49 11.71 13.18 10.32 10.23 1JFK 12.86 12.92 12.91 11.52 6.38
1K2H 6.43 491 4.80 5.32 5.37 1ZFS 2.14 2.37 2.03 335 3.14
1GUD 3.63 1.07 0.98 3.58 3.35 IRPJ 0.92 1.18 1.11 2.90 277
IMO7 3.77 3.94 3.90 5.51 423 1MO8 3.40 3.51 3.24 4.67 4.04
10RM 5.68 6.17 5.57 5.26 4.82 1QJ8 0.95 0.84 0.70 2.10 1.49
1WD7 1.99 472 4.49 14.24 433 IWCW 0.81 1.20 1.03 14.20 1.52
1W4U 2.24 224 221 226 2.04 1URG6 2.16 2.11 2.13 2.46 2.02
1VR6 1.38 6.27 1.65 6.17 4.11 IRZM 9.13 6.86 0.80 4.51 42
1715 6.07 5.25 4.16 4.74 4.50 1217 0.60 0.87 0.73 2.64 1.63
2CG7 0.93 333 1.08 6.45 2.16 2CGo6 6.22 3.66 3.11 9.57 2.52
2NLN 391 3.95 3.86 3.61 3.43 IRRO 0.64 0.73 0.59 1.11 1.13
2UZS5 3.01 2.67 3.07 3.10 2.96 2VCD 1.38 1.57 1.40 1.86 1.50
2JU3 2.68 2.70 2.74 2.68 2.52 2JU8 1.76 1.79 1.77 1.71 1.71
2JWW 2.63 2.61 2.54 2.85 2.82 IRTP 0.38 0.50 0.44 1.42 1.45
2K43 2.76 3.04 2.81 2.80 2.67 2K8R 4.01 4.17 4.05 3.68 3.39
2KQ2 8.90 9.49 8.92 9.67 8.37 2KW4 10.70 7.14 9.50 9.13 8.54
2KXL 4.70 2.63 2.61 323 2.74 2K0G 3.32 3.20 3.23 3.88 3.23
2Ls50 3.09 4.58 3.02 10.13 5.10 2151 3.27 5.30 3.52 9.88 4.70
2LKC 7.32 7.05 7.50 7.64 6.01 2LKD 3.98 3.75 3.92 5.05 4.56
4LPS 9.16 17.47 5.93 8.94 9.18 4P2Y 7.14 16.96 7.04 10.53 10.94
Average 4.12 4.15 3.39 5.00 3.98 Average 3.19 3.55 2.85 4.77 337




Table S5 | Information of 20 paired dual-conformation proteins from the Cfold benchmark set, the
definitions of Foldl and Fold2 are provided by Chakravarty D, et al .

Fold1 state Fold2 state RMSD(A) TM-score trX2-D
Release between Foldl | between Foldl | sample
PDB ID Release Date PDB ID

Date and Fold2 and Fold2 number
IRLM 2003-11-26 2HF2 2006-06-22 3.58 0.79 299
2BBW 2005-10-17 2AR7 2005-08-19 5.16 0.75 301
2IEY 2006-09-19 2IEZ 2006-09-19 5.49 0.70 234
2NXE 2006-11-17 27BP 2007-10-26 11.75 0.78 368
2V9R 2007-08-25 2V9Q 2007-08-25 3.87 0.67 287
3BIS 2007-11-30 3BIK 2007-11-30 3.86 0.73 287
3PIL 2010-11-07 3PIM 2010-11-07 7.39 0.74 221
3T9L 2011-08-03 4A3P 2011-10-03 4.92 0.61 247
3UVS 2011-11-29 7L6X 2020-12-24 11.97 0.57 469
5JGK 2016-04-20 5JGL 2016-04-20 6.63 0.68 252
5037 2017-05-23 502K 2017-05-21 6.81 0.58 271
50VZ 2017-08-30 4P0I 2014-02-21 4.58 0.67 412
6DZX 2018-07-05 6CVA 2018-03-27 391 0.73 279
6HNI 2018-09-15 6HNK 2018-09-15 431 0.75 380
6P8R 2019-06-07 6P8O 2019-06-07 6.15 0.58 203
6SVF 2019-09-18 6GGP 2018-05-03 5.68 0.58 354
6UHI 2019-09-27 6UHS 2019-09-27 3.76 0.68 205
6ZJB 2020-06-28 62JD 2020-06-28 6.74 0.76 315
7RDT 2021-07-11 7RDS 2021-07-11 8.75 0.51 258
8DP6 2022-07-15 8DP7 2022-07-15 4.40 0.72 499




Table S6 | Comparison of Cfold (dropout), Cfold (noise), trX2, and trX2-D on 20 dual-conformation

proteins.
Fold1 Fold2
RMSD against Fold1 state(A) RMSD against Fold2 state(A)
state state
Cfold Cfold Cfold Cfold
PDB ID trxX2 trX2-D | PDBID trX2 trX2-D
(dropout) | (cluster) (dropout) | (cluster)

IRLM 1.02 1.04 1.51 1.53 2HF2 3.26 3.18 3.84 2.97
2BBW 3.87 3.50 2.93 2.56 2AR7 2.64 2.53 6.44 3.97
2IEY 15.99 15.91 15.98 15.61 2IEZ 17.50 17.46 17.48 17.01
2NXE 5.79 5.78 4.86 4.50 27ZBP 7.63 6.40 10.36 3.77
2V9R 241 2.17 2.46 2.22 2VoQ 4.92 4.28 5.20 3.67
3BIS 5.79 3.97 4.65 2.54 3BIK 3.35 2.25 3.61 3.07
3PIL 1.62 1.69 347 2.49 3PIM 6.95 6.93 7.76 7.12
3T9L 3.17 2.95 3.11 3.04 4A3P 1.77 1.56 4.09 3.55
3UVS5 12.28 11.90 4.13 3.71 TL6X 1.45 1.43 13.69 3.40
5JGK 1.22 1.24 1.93 1.93 5JGL 5.82 5.98 7.51 6.65
5037 1.25 1.28 1.86 1.74 502K 6.18 5.20 547 3.37
50VZ 1.23 1.13 1.85 1.82 4P0I 3.06 3.05 3.83 3.47
6DZX 1.29 1.21 1.93 1.93 6CVA 2.95 2.95 3.71 3.59
6HNI 1.58 1.13 1.66 1.65 6HNK 4.05 3.76 4.04 3.74
6P8R 1.64 1.41 2.69 2.58 6P8O 4.42 444 5.54 4.61
6SVF 0.98 1.00 1.57 1.35 6GGP 5.20 4.93 5.72 5.12
6UHI 3.76 3.81 2.64 2.53 6UHS 3.20 331 3.64 2.31
6ZJB 5.07 483 1.66 1.53 6ZJD 1.96 1.91 6.07 342
7RDT 1.52 1.50 1.80 1.79 7RDS 8.43 8.47 8.14 8.09
8DP6 2.17 1.54 2.21 1.99 8DP7 1.52 1.60 2.70 2.20
Average 3.68 3.45 3.24 2.95 Average 4.81 4.58 6.44 4.75




Table S7 | Comparison between the input-driven strategies and trX2-D.

Strategy

Key mechanism

Advantages

Disadvantages

- Rapid end-to-end inference via

- Indirect output control limits the

exploration of conformational space.

Input-driven Perturbing input MSAs - Lacks mechanistic interpretability of
GPU acceleration.
(AF-Cluster, (clustering or the conformational transitions.
- Inherits high baseline accuracy
AFsample2) subsampling). - Relies on the rich evolutionary
from the AF2 architecture.
information for effective
clustering/sampling.
- Direct modulation of predicted
geometries enables more effective
- Accuracy limited by baseline model.
Iteratively ~ sampling | capturing of alternative states.
- Lower throughput due to iterative
Output-driven | predicted 2D | - Provides physical interpretability

(trX2-D)

geometries + energy

minimization.

via energy landscapes.
- Robust with sparse evolutionary

information.

CPU-based energy minimization.
- Relies on multi-state signals in

predicted geometries.




Table S8 | Analysis of inference times. This comparison was performed on 20 targets with lengths
ranging from 100 to 200 residues from the apo-holo dataset. The experiment is performed on a

single CPU core.
Sequence Geometry prediction Time per Rosetta
PDB ID Total time(s)
length time (s) iteration (s)

1RRO 108 17.68 305.79 323.47
IRTP 109 17.88 319.41 337.29
IMUT 129 79.27 400.57 479.84
1URE 131 38.24 398.86 437.10
1QJ8 148 41.21 436.70 47791
1EX7 186 146.35 620.82 767.16
1F3Y 165 118.77 53431 653.08
1FMF 137 33.18 408.65 441.83
1A 148 36.20 452.53 488.73
1JFJ 134 88.00 328.91 41691
1KRX 124 90.73 403.59 494.32
1wW4U 147 103.76 487.06 590.82
2JU8 127 28.65 389.34 417.99
2VCD 137 92.03 456.83 548.86
2K0G 142 94.92 407.02 501.93
2K8R 133 87.61 43521 522.82
2KQ2 147 55.38 486.69 542.07
2151 102 17.89 219.95 237.85
2LKD 178 137.83 546.16 683.98
SDOW 146 101.87 349.58 451.45
Average 138.9 71.37 419.40 490.77
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Table S9 | Information of 31 NMR proteins, along with the maximum pairwise RMSD(A) and the
minimum pairwise TM-score.

Maximum Minimum pairwise | trX2-D sample
PDB ID Release date
pairwise RMSD(A) TM-score number
1BZK 1998-11-01 8.94 0.24 141
INOZ 2002-10-15 1.76 0.26 128
1WOR 2004-10-15 8.28 0.66 190
2A7Y 2005-07-06 2.59 0.73 150
2FFT 2005-12-20 36.54 0.25 162
2EOD 2007-03-29 1.79 0.72 156
2Ju4 2007-08-14 13.02 0.08 167
2RNN 2008-01-30 9.69 0.83 109
2K4F 2008-06-07 12.98 0.22 148
2K9P 2008-10-21 7.62 0.48 194
2KEB 2009-01-28 2.96 0.74 183
2WCY 2009-03-17 3.24 0.79 227
2KLZ 2009-07-12 2.37 0.42 111
2KSD 2010-01-02 8.59 0.15 167
2KWQ 2010-04-15 291 0.79 157
2L7S 2010-12-21 14.17 0.41 132
218E 2011-01-11 6.58 0.67 131
2LFP 2011-07-07 3.43 0.78 233
2LTF 2012-05-22 10.66 0.89 134
2LXW 2012-09-03 2.01 0.74 145
2M2F 2012-12-20 2.42 0.42 222
2M3E 2013-01-17 2.54 0.79 125
2M6M 2013-04-06 2.66 0.77 207
2M9U 2013-06-19 3.40 0.73 88
2MXV 2015-01-16 1.33 0.64 156
2NDJ 2016-06-09 19.13 0.27 203
S5KZO 2016-07-25 5.77 0.57 149
SMAT 2016-10-19 10.62 0.61 181
SNAM 2017-02-28 0.79 0.75 132
6NU4 2019-01-30 20.93 0.31 198
6UCH 2019-09-16 0.53 0.66 112
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Table S10 | Summary of data redundancy removal strategies for 3 benchmark sets.

Benchmark dataset Size Redundancy removal strategy

Sequences sharing >50% sequence identity with these

Apo-holo pairs 37 test targets were excluded from the training and fine-
tuning set
Cfold dual-conformation 20 Filtered with a 40% sequence identity threshold
proteins against the training and fine-tuning set.

. ) Proteins sharing >30% sequence identity relative to
NMR dynamic proteins 31 o .
the training and fine-tuning dataset were excluded.
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Fig. S6 | Head-to-head RMSD comparison between trX2 (NMR) and trX2 for the apo state

(a) and the holo state (b).
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Fig.S7 | Comparison of MSA depths. Bar chart quantifying the mean MSA depth for raw
sequences (blue) versus clustered sequences (orange) in the apo-holo and NMR datasets. The value
for "AF-Cluster MSAs" is calculated as the average depth of the deepest MSA generated by AF-

Cluster for each target across the respective datasets.
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AF2-based sampling, trX2-D maintains performance comparable to trX2.
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Fig. S9| Per-residue RMSF profiles for three challenging cases shown in Fig. 6.
Root-mean-square fluctuations (RMSF) are plotted against residue index for the native ensemble
(grey), AlphaFold2 (red), AFsample2 (orange), and trX2-Dynamics (blue). Compared to AF2 and
AFsample2, trX2-Dynamics captures broader structural diversity with RMSF more closely

matching the native flexibility.
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Fig. S10 | Performance of trX2-D and other methods on NMR backbone dynamics. (a) head-
to-head comparisons of Pearson correlation (r) of SZensembie for trX2-D versus AF2, AF-Cluster,
AFsample2, and trX2; points above the diagonal denote trX2-D superiority. (b) boxplots illustrating
the distributions of correlation coefficients (r) for different methods on the NMR dataset.
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Fig. S11 | RDC analysis for the computational ensembles. (a, b) per-residue absolute error
heatmaps (left) and global Q-factors (right) for targets 2M3E (a) and 2M6M (b). Lower Q-factors
denote better agreement with experimental data. (c¢) visualization of experimental and predicted
ensembles for 2M6M. The observed discrepancies highlight a common limitation across all methods
in accurately capturing the precise spatial orientation of flexible fluctuations relative to the protein

core.
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Fig. S12 | Impact of energy filtering on trX2-D performance on NMR benchmark set.
Comparison of trX2-D results before and after energy-based filtering for RMSDr. (a) and
RMSDyean (b). Notably, the filtering step improves the ensemble quality for 90.3% (28/31) of the
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Fig. S13 | Comparison between trX2-D and trX2-Cluster. (a) violin plots comparing the

distribution of RMSD values between predicted and native structures for trX2-Cluster and trX2-D

in both apo and holo states. Individual data points are overlaid on the violins. (b, ¢) head-to-head

comparisons of RMSD between trX2-D and trX2-Cluster for the apo state (b) and the holo state (¢).
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Fig. S14 | Applying iterative sampling to AF2 with different MSA depths. (a) violin plots
showing the distribution of RMSD values for AF2 applying the heuristic iterative sampling strategy
(AF-HIS) with default MSA depth, compared to standard AF2 predictions for both apo and holo
states. (b) similar violin plots showing the impact of iterative sampling on AF2 predictions generated
using shallow MSAs, compared to standard shallow MSA AF2 predictions. Individual data points

are overlaid on all plots.
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Fig. S15 | Comparison of distance distributions for a representative residue pair in apo and
holo states. The left panels illustrate the apo (PDB ID 2CG7) and holo (PDB ID 2CG6) structures
(cartoon representation), highlighting the residue pair and the corresponding distances in blue. The
right panels present the normalized probability distributions of the distance between this pair
predicted by trX2(NMR), AF2, and AF2 with subsampled MSA (AF2(shallow)).
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Fig. S16 | Comparison between AF-Rosetta and AF-HIS. (a) violin plots of RMSD distributions
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Fig. S17 | Evaluation of clustering strategies for representative structure selection. (a, b) the
average RMSD (a) and TM-score (b) of representative structures selected using k-means clustering
based on different structural similarity metrics (TM-score, RMSD, and inter-Ca distances d®®) for
both apo and holo states. A baseline representing the average performance without clustering is also

shown. Each error bar represents one-fifth of the standard deviation.
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Fig. S18 | Examples of apo-holo protein pairs exhibiting significant conformational differences

despite having high inter-conformation TM-scores.
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Fig. S19 | Visualizing the impact of Gaussian smoothing on protein structure representation.
Representative protein structures are shown (a) without and (b), with Gaussian smoothing applied.
Gaussian smoothing enhances structural regularity and completeness in the heuristic iterative

process.
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