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ABSTRACT 

Deep learning-based methods, such as AlphaFold2, have revolutionized the prediction of static protein structures. However, 
modeling alternative conformations and dynamic structures remains an unsolved problem. Here, we present trRosettaX2- 
Dynamics (trX2-D), an innovative solution building on our CASP15 and CASP16 winning method, trRosettaX2. trX2-D tackles 
this challenge by employing physics-based iterative sampling of trRosettaX2’s predicted inter-residue geometric distributions. The 
model underwent pre-training on high-resolution X-ray structures, followed by fine-tuning on approximately 7000 dynamic NMR 

structures. This dual training regime significantly bolsters its capacity to predict alternative conformations and dynamic structures. 
At its core, trX2-D employs a Transformer-based neural network to initially predict a set of inter-residue geometric constraints. 
These constraints are then iteratively sampled to generate dynamic structures, entirely circumventing the need for prior knowledge 
of native structural states. Extensive benchmarking across three distinct datasets—two focused on alternative conformations and 
one on dynamic structures—demonstrates trX2-D’s promising ability to predict alternative conformations and accurately capture 
structural dynamics. This work highlights the potential of integrating deep learning predictions with physics-based sampling to 
advance the field of protein dynamic structure prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Introduction 

Protein structures are fundamental determinants of biologi-
cal function [ 1 ], and their dynamic conformational changes
orchestrate many cellular processes [ 2 ]. Understanding their
conformational landscape is crucial for deciphering mechanisms
of biological action, developing therapeutics, and engineering
novel biological molecules. While deep learning approaches,
such as AlphaFold2 (AF2) [ 3 ], RoseTTAFold [ 4 ], trRosetta [ 5–
8 ], and ESMFold [ 9 ], have revolutionized static protein structure
prediction, accurately modeling alternative conformations of
proteins remains a significant challenge. 
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The challenge in predicting multiple conformations arises from 

the scarcity of experimental data. Recently, Bryant et al. [ 10 ]
revealed a surprisingly small number of sequence clusters
( < 1000) exhibiting significant conformational diversity in the
Protein Data Bank (PDB) [ 11 ]. Consequently, current data-driven
methods like AF2 tend to produce conformations that closely
resemble those experimentally resolved in the PDB, posing a
challenge to effectively capturing the protein conformational 
diversity. 

Several strategies have been explored to address the challenge of
multi-conformation prediction [ 12 ]. Methods leveraging contact 
its use, distribution and reproduction in any medium, provided the original work is properly 
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maps of a known conformation to predict another have demon-
strated the ability to generate alternative conformations [ 13 ].
However, these methods are inherently limited as they require
prior knowledge of at least one native conformational state
and struggle to predict more than two distinct conformations.
Molecular dynamics simulations offer a physics-based approach
to explore the conformational landscape of proteins [ 14 ], but the
substantial computational cost and time requirements limit their
applicability to large protein systems. The AF2-based approaches,
such as AF-Cluster [ 15 ], have shown promise in generating mul-
tiple conformations by clustering and sampling diverse inputs for
AF2 (e.g., multiple sequence alignment (MSA) and template [ 10,
15, 16 ]). Nevertheless, concerns regarding the true performance
of these AF2-based methods have emerged due to inadequate
benchmark testing and data leakage stemming from the AF2
training set [ 10, 17 ]. To address this issue, Cfold [ 10 ] retrained
and evaluated AF2 using a meticulously constructed training-
test split, and employed MSA clustering and random dropout
to generate diverse conformations. Nevertheless, their results
indicated that certain conformations remain elusive using MSA
clustering and random dropout strategies. 

Overall, AF-Cluster and other deep learning methods rely on
modifying the inputs to the model in an attempt to generate
multiple conformations. However, the effectiveness of these input
perturbation strategies depends on highly informative inputs.
For example, AF-Cluster struggles with shallow MSAs (e.g.,
depth < 10). Moreover, lacking direct control over the predicted
structures might limit the diversity and functional relevance of
the generated conformations. 

Building on this observation, we introduce trRosettaX2-
Dynamics (trX2-D), a novel deep learning-based approach
to predict multiple conformations using an output-driven
iterative sampling strategy. This method is primarily powered
by a Transformer-based protein structure prediction method,
trRosettaX2 (trX2), which is an improved version of trRosettaX
[ 7 ] and outperforms RoseTTAFold, though using much fewer
parameters and computational resources [ 18 ]. trX2 adopts an
end-to-end architecture that can simultaneously predict the 2D
geometries (1 distance and 3 orientations defined in trRosetta
[ 5 ]) and 3D structures. A unique property of the predicted
2D geometries lies in that they are represented as probability
distributions and thus potentially encode latent information
about alternative conformations. Inspired by this, trX2-D designs
a heuristic module to sample diverse conformations based on
the iterative sampling of the predicted 2D geometries, which
allows the generation of multiple conformations without any
prior information. In addition, trX2-D employs a fine-tuning
strategy on the dynamic structures solved by Nuclear Magnetic
Resonance (NMR) experiments to improve the conformational
diversity information in the predicted geometries. 

We evaluated trX2-D on three datasets non-redundant to its
training set, including two established benchmarks for dual-
conformation proteins and a dataset of dynamic proteins.
Benchmark tests show that trX2-D significantly improves upon
the performance of the base trX2 model and shows promise
in predicting alternative conformations on dual-conformation
benchmarks. Furthermore, our tests on the dynamic protein
dataset indicate that trX2-D can generate more diverse conforma-
2 of 16
tion ensembles compared to other methods. In summary, trX2-D
represents a novel and promising approach for predicting protein
alternative conformations, marking a solid step towards a more
comprehensive understanding of protein structural dynamics. 

2 Results 

2.1 Overview of the Method 

trRosettaX2 (trX2) is a lightweight protein structure prediction 
algorithm designed to achieve competitive performance using 
limited computational resources, which has been briefly intro-
duced before [ 18 ]. As shown in Figure 1a , trRosettaX2 employs
a Transformer-based neural network, trFormer, to predict 2D 

geometries (distance and orientations) from multiple sequence 
alignment (MSA). The 3D structure is then folded through
either structure module (i.e., end-to-end prediction) or energy 
minimization (i.e., two-step prediction). Although the accuracy 
of trX2 still slightly lags behind that of AlphaFold2 (AF2),
its unique advantages, such as rapid MSA selection and the
generation of decoys complementary to the AF2 predictions, 
helped our group win the championship in CASP15 [ 18, 19 ]
and CASP16 experiments ( https://predictioncenter.org/casp16/ 
zscores_final.cgi ). For the detailed methodology description and 
performance analysis of trX2, please refer to Text S1 . 

Building upon trRosettaX2, we developed trRosettaX2-Dynamics 
(trX2-D) to improve protein conformation generation. This 
advancement incorporates two principal modifications: 1) fine- 
tuning trX2 with NMR ensembles (trX2 (NMR); see Figure 1b,c
and Methods for details) to enhance the representation of
dynamic signals within the model outputs; and 2) designing an
iterative process for sampling diverse 2D geometries to generate
multiple distinct conformations (see Figure 1d ; Figure S2 , and
Methods for details). The complete trX2-D workflow leverages 
both the original trX2 and the NMR fine-tuned trX2 (NMR) in
parallel to produce two sets of initial 2D geometry predictions.
These predictions subsequently serve as inputs to the iterative
process, yielding a diverse ensemble of protein conformations. 

2.2 Performance of trX2-D in Distinguishing Apo 
and Holo States 

We evaluated the performance of trX2-D using an elaborately
collected dataset of 91 proteins, which were experimentally solved
in apo-holo states [ 13, 20 ]. To focus our analysis on substantial
conformational changes, subsequent detailed analyses centered 
on a subset of 37 proteins exhibiting large conformational changes
(see Methods for details) [ 10, 13 ]. The information on these
conformation pairs is listed in Table S2 . The results for the
remaining samples are detailed in Supporting Information , which
lead to similar conclusions. 

We first compare trX2-D with the default trX2 model to examine
the extent of improvement in capturing alternative conforma- 
tions. In this work, we use RMSD as the primary evaluation
metric, which better reflects local structural variation than the
TM-score. A supplementary TM-score comparison, consistent 
with the RMSD findings, is provided in Figure S3 . Figure 2a
Advanced Science, 2026
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FIGURE 1 Architectures of trRosettaX2 and trRosettaX2-Dynamics. (a) overview of trRosettaX2 and trRosettaX2-Dynamics. The sole input is the 
amino acid sequence of a target protein. A multiple sequence alignment (MSA) is generated and converted into two representations, MSA representation 
and pair representation, which are updated through a Transformer-based module (trFormer). The updated representations are fed into the structure 
module to predict the static 3D structure by trRosettaX2. Meanwhile, 2D geometries derived from the pair representation are used to sample alternative 
conformations by trRosettaX2-Dynamics. n , L , and c refer to the number of MSA rows, sequence length, and number of channels (128 here), respectively. 
(b,c) trRosettaX2-Dynamics is first pre-trained with X-ray structures (b) and then fine-tuned with NMR structures (c). (d) The iterative sampling of 
alternative conformations using predicted 2D geometries. 
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illustrates the overall performance of trX2-D and trX2 predictions
for both apo and holo states. The default trX2 produces higher
average RMSDs ( ∼ 4.8 Å) for both apo and holo state predictions.
As shown in Figure S4 , trX2 predictions exhibit similar RMSD
values relative to both the apo and holo states, suggesting they
may represent intermediate states that deviate from the apo
and holo conformations. In contrast, by sampling diverse 2D
geometries, trX2-D demonstrates the capability to transition from
these trX2-predicted intermediate states towards either the apo
or holo state, consequently yielding enhanced predictive stability.
As a result, trX2-D achieved significantly lower RMSD values (a
20% ∼ 30% reduction) compared to trX2 for both states, highlight-
ing its effectiveness in improving the alternative conformation
generation. 

The benefits of trX2-D are further underscored by a direct head-
to-head RMSD comparison with trX2 for both apo and holo
states (Figure 2b ). A clear majority of data points (34/37 for
the apo state; 33/37 for the holo state) fall below the diagonal
line, which means that trX2-D achieves lower RMSD for ∼

90% of samples in both states. This trend is particularly pro-
nounced for samples where the original trX2 performed poorly
(RMSD > 5 Å). 
Advanced Science, 2026
Beyond improving accuracy, trX2-D significantly enhances con- 
formational heterogeneity, which is measured by the RMSD 

between predicted apo and holo states (denoted as RMSDapo-holo ).
As shown in Figure 2b , trX2 models are largely homogeneous
(average ∼ 1.7 Å), with 30/37 targets showing < 2 Å deviation.
Conversely, trX2-D captures greater heterogeneity (average ∼ 3.2 
Å), limiting high-similarity cases ( < 2 Å) to only 15/37 (40%), a
marked improvement over trX2. 

To gain further insight into the factors underlying this enhanced
performance, we analyzed the influence of experimental confor- 
mational heterogeneity on the prediction accuracy of the trX2
model. Our analysis revealed that the RMSD of trX2 predictions
positively correlates with the divergence between experimental 
states (i.e., RMSDapo-holo ), with a Pearson correlation coefficient 
(PCC) of 0.58 (blue line in Figure S5 ). This finding indicates
that heterogeneity between experimental states tends to pose 
challenges to trX2’s accurate prediction. This trend is more
pronounced for 16 samples exhibiting conformational differences 
of RMSDapo-holo > 5 Å between their experimental states, where 
the PCC increases to 0.84 (orange line in Figure S5 ). This
highlights trX2’s difficulty in accurately modeling cases with 
significant structural variability. Despite this challenge faced by 
3 of 16
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FIGURE 2 Performance of trX2-D on the apo-holo benchmarks. (a) Accuracy assessment measured by RMSD relative to experimental reference 
structures. Bars represent mean values, and error bars denote half of the standard deviations. Individual points overlaying the bars represent specific 
targets. In the head-to-head scatter plots, point sizes are proportional to the absolute performance difference between the two methods. (b) Evaluation 
of conformational heterogeneity, quantified by the pairwise RMSD between the two predicted states (RMSDapo-holo ). In the violin plots, the internal 
lines represent the quartiles (dashed) and median (solid). Dashed vertical and horizontal lines in the scatter plot mark a structural similarity cutoff 
of 2 Å. Arrows in the titles of (a) and (b) denote the direction of better performance. (c) Correlation between prediction accuracy and the magnitude 
of experimental conformational change (RMSDapo-holo ). (d) Energy landscape analysis of a representative target, Adenylate Kinase (AdK). Predicted 
conformations are colored by state assignment (red: apo; blue: holo); corresponding RMSD values are indicated next to each structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 21983844, 0, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/advs.202518469 by Jianyi Y

ang - Shandong U
niversity L

ibrary , W
iley O

nline L
ibrary on [22/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative
trX2, trX2-D achieves consistent improvements across all levels
of conformational divergence (Figure 2c ). This result further
confirms the robust improvement made by trX2-D. 

2.3 Interpretability via the Energy Landscape 

As an output-driven method that incorporates physical energy,
trX2-D offers a unique advantage in the interpretability of the
energy landscape. Unlike “black-box” input-driven approaches,
trX2-D generates diverse conformational ensembles that provide
mechanistic insight into transition pathways. We illustrate this
4 of 16
capability using Adenylate Kinase (AdK), a classic system char-
acterized by a large-scale transition between an apo state (PDB
ID: 4AKE) and a holo state (PDB ID: 2ECK). 

The observed trajectory reveals a compelling physical mechanism 

for conformational switching. As shown in Figure 2d , the initial
predicted structure starts closer to the apo state (RMSD: 3.71 Å)
than the holo state (5.18 Å). The early phase of the iteration
exhibits a sharp spike in Rosetta energy, which aligns with recent
findings on energetic frustration [ 21 ]: the transition between
conformational states requires an initial destabilization of the 
starting state by disrupting specific intramolecular interactions. 
Advanced Science, 2026
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FIGURE 3 Ablation study on the apo-holo benchmarks. (a) Average RMSD of predicted conformations across both states. Error bars denote one- 
tenth of the standard deviation across targets. (b) Predicted structures for a representative target exhibiting significant inter-domain rotation (apo: 
1VR6; holo: 1RZM). Relative to the trX2 baseline, trX2 (NMR) improves Apo prediction but compromises Holo accuracy. In contrast, trX2-D enhances 
predictions for both states, effectively recapitulating the domain rotation. 
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This process results in a high-energy “activated” conformation
(step 10) where key stabilizing factors (e.g., hydrogen bonds or salt
bridges holding the apo geometry) are disrupted. Consequently,
this conformation exhibits increased local flexibility and loop for-
mation, consistent with the “cracking”mechanism where regions
become transiently disordered to facilitate barrier crossing [ 21 ].
Interestingly, this destabilization allows the structure to adopt a
slightly more open topology, yielding a decreased RMSD relative
to the apo state (RMSD: 3.25 Å) before the transition proceeds. 

Subsequently, the energy fluctuates as the system explores the
conformational space, attempting to escape the local energy min-
imum of the apo basin. Around step 130, the system successfully
surmounts the energy barrier, marked by a distinct drop in energy,
and transitions toward the holo state (with step 140 marking the
boundary). Finally, at step 155, the energy converges to its lowest
value, which remarkably coincides with a conformation highly
resembling the native holo structure (RMSD: 1.89 Å). 

The interpretability based on the energy landscape, combined
with our iterative sampling strategy, offers valuable insights
into the dynamics of conformational switching. This suggests
a promising avenue for approaching more complex challenges,
including the characterization of transient intermediate states. 

2.4 Impact of NMR-Based Fine-Tuning and 

Iterative Sampling 

trX2-D leverages the architecture of the trX2 network. To enhance
its ability to generate diverse conformations, we employed fine-
tuning on a dataset of dynamic structures derived from NMR
experiments [ 22 ]. Moreover, trX2-D introduces a heuristic itera-
tive sampling process to generate diverse conformations from the
predicted geometric restraints. To systematically evaluate their
contributions, we conducted a series of ablation experiments, as
Advanced Science, 2026
summarized in Figure 3 and Table S3 . As a point of reference, the
original trX2 produced models with average RMSD values of 5.00
Å for the apo state and 4.77 Å for the holo state, setting a baseline
for assessing performance improvements. Detailed definition of 
the ablated variants is provided in Table S3 . 

Building on the baseline model, we first evaluated the impact
of NMR-based fine-tuning, which produced trX2 (NMR) (model 
(2) in Figure 3a ) with average RMSDs of 4.94 Å (apo) and
4.17 Å (holo), both lower than trX2. This improvement suggests
that fine-tuning with NMR data provides structural diversity 
beyond that captured by the original trX2, thereby enhancing
its ability to predict multiple conformations. Interestingly, we 
observed that both the fine-tuned variant and the original trX2
networks demonstrated distinct advantages on certain samples. 
As illustrated in Figure S6a,b , trX2 (NMR) outperformed trX2 for
nearly half of the targets (blue points; 14/37 for the apo state,
17/37 for the holo state), likely benefiting from the additional
dynamic information inherent in NMR ensembles. Conversely, 
trX2 (NMR) performed worse than trX2 for other targets (orange
points). This could be attributed to the noise introduced by the
lower resolution and uncertainty associated with NMR struc-
tures, which might negatively impact the training data quality.
These results highlighted a strong complementarity between trX2
and trX2 (NMR), indicating the potential of integrating both
models to achieve more accurate multi-conformation predictions. 

Subsequently, we assessed the impact of the heuristic iterative
sampling process. Employing this process to trX2 (i.e., model
(3) in Figure 3a ) reduced the average RMSD from 5.00 to 4.52
Å for the apo state, and from 4.76 to 4.16 Å for the holo state.
Furthermore, applying the heuristic iterative process to trX2
(NMR) (i.e., model (4)) also reduced the RMSD from 4.94 to 4.53
Å (apo) and from 4.17 to 3.79 Å (holo). These results demonstrate
the effectiveness of the sampling process for both trX2 and its
NMR-based variant, highlighting its broad applicability. These 
5 of 16
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consistent performance improvements underscore the efficacy of
this sampling process in exploring conformational landscapes. 

Considering the complementary modeling potential of trX2 and
trX2 (NMR), we analyzed the benefits of integrating predictions
from both. The integration of these two models (i.e., model (5)
in Figure 3a ) achieved average RMSD values of 4.37 Å (apo) and
3.84 Å (holo), surpassing single-model predictions. Building on
these promising results, trX2-D (model (6) in Figure 3 ) further
combined the predictions from both model (3) and model (4) (i.e.,
the models equipped with the heuristic iterative sampling). This
comprehensive integration yielded the best overall performance,
with average RMSD values of 3.98 Å (apo) and 3.37 Å (holo),
representing improvements of 20.4% and 29.2% compared to trX2,
respectively. This strategy effectively harnesses the strengths of
both models while mitigating their individual limitations. 

For a more specific illustration of the distinct impacts of NMR-
based fine-tuning and the heuristic iterative sampling process,
we analyzed a challenging test case characterized by a significant
inter-domain conformation change (apo PDB ID: 1VR6, holo PDB
ID: 1RZM). This protein is 3-deoxy-D-arabino-heptulosonate-7-
phosphate synthase (DAHPS) [ 23 ], a key enzyme for aromatic
amino acid biosynthesis. Its activity is regulated by an allosteric
transition between inactive and active forms upon ligand binding
(Cd2 + , PEP, and E4P), reflected as a substantial inter-domain
motion involving a ∼ 160◦ rotation (RMSDapo-holo = 10.10 Å).
This pronounced conformational difference makes DAHPS a
particularly challenging and informative test case for methods
aiming to capture conformational diversity. 

As shown in Figure 3b , while trX2 generates a structure approx-
imating the holo state (RMSD = 4.51 Å), it fails to accurately
model the secondary structure of the variable domain in the apo
state, yielding a higher RMSD of 6.17 Å. In contrast, trX2 (NMR)
correctly models the secondary structure for this domain in the
apo state, leading to a slight improvement in the apo prediction
(RMSD = 5.97 Å). However, its performance on the holo state
diminishes (RMSD = 6.37 Å), reflecting the potential nega-
tive effect associated with NMR fine-tuning. This case further
illustrates the complementarity between trX2 and trX2 (NMR).
In comparison, trX2-D demonstrates superior performance for
both states. Through the heuristic sampling and multi-model
integration, trX2-D achieves RMSD values of 4.11 Å for the apo
state and 4.20 Å for the holo state, which are 33.3% and 6.8% lower
than trX2, respectively. Importantly, trX2-D effectively captures
both the detailed intra-domain secondary structures and the
large-scale inter-domain motion. 

2.5 Comparison with AF2-based methods 

To benchmark trX2-D against other strategies, we further eval-
uated it alongside two representative AF2-based methodologies:
AF-Cluster [ 15 ], which generates multiple conformations via
DBSCAN clustering of the input MSA, and the recently published
AFsample2 [ 24 ], which employs random MSA column masking
to simulate the perturbation of co-evolutionary information. 

To facilitate a thorough understanding of trX2-D’s capabilities,
a preliminary comparative analysis between the original trX2
6 of 16
and AF2 was conducted on the apo-holo dataset. As shown in
Figure 4a and Table S4 , the original trX2 performs worse than
AF2 on both apo and holo states. This disparity can be attributed
to two main factors: 1) the relatively lightweight architecture
of trX2 compared to AF2 (Table S1 and Figure S1 ); 2) critically,
the potential data leakage implied in AF2’s training. The release
dates for all 37 apo-holo pairs in our dataset (all prior to 2015;
Table S2 ) predate AF2’s training data cutoff (2018-05), suggesting
AF2 might “remember” these native conformations rather than 
genuinely predicting them. We also find that AF2 tends to favor
the holo state, with an average RMSD of 3.19 Å, compared to 4.12 Å
for the apo state. For 64.9% of the 37 conformation pairs, the AF2
prediction was closer to the holo state (lower RMSD) than the apo
state. This observation is consistent with findings from previous
work [ 20 ]. We hypothesize that holo forms are more stable than
the apo forms and are therefore more readily predicted by AF2,
which excels as a well-trained static structure prediction method.

Owing to disparate baseline performances, we focus on evalu-
ating the performance gains yielded by each strategy over its
respective baseline (AF2 or trX2). For AF-Cluster, the MSA clus-
tering strategy yields no statistically significant improvement over
the standard AF2 baseline for either apo (P-value: 0.53) or holo (P-
alue: 0.83) state predictions. This aligns with recent findings [ 25 ],
which indicate that sequence clustering strategies yield limited 
benefits. In contrast, trX2-D consistently outperforms the original 
trX2 in predicting both states, achieving RMSD reductions of over
1 Å (P-value: 0.0016 for the apo state and 0.0011 for the holo
state). Consequently, despite using a lightweight network and 
avoiding AF2-associated data leakage, trX2-D achieved a slightly 
lower apo-state RMSD and comparable overall performance. As 
shown in Figure 4b , trX2-D surpassed AF-Cluster in predicting
the apo state for 51.4% (19/37) of targets, validating its competitive
performance. 

To gain a deeper understanding of these results, we next assessed
the influence of conformational divergence on the performance 
comparison (Figure 4c ). It has been previously observed that
AF2 performs poorly for proteins exhibiting significant confor- 
mational changes [ 20 ]. For trX2-D, we observe a tendency to
outperform AF-Cluster for proteins with large conformational 
changes. For example, for the targets with RMSDapo-holo over 8.5
Å, trX2-D can generate more accurate structures for both apo and
holo states, achieving RMSDs of 7.53 and 7.35 Å, respectively, com-
pared to 7.90 and 8.64 Å of AF-Cluster. This highlights trX2-D’s
better capacity to capture significant structural variability. 

We also benchmarked against the recently published AFsample2, 
which generates multiple conformations by randomly mask- 
ing MSA columns. Unlike AF-Cluster, AFsample2 effectively 
improves performance for both states over AF2, achieving the best
overall performance among the compared methods, consistent 
with recent reports that random subsampling is superior to
clustering [ 25 ]. However, in terms of relative improvements over
the baseline model, trX2-D still maintains the best performance,
outperforming AFsample2 (1.02 vs 0.73 Å for apo; 1.40 vs 0.34
Å for holo). Furthermore, as shown in Figure 4d , trX2-D is
more effective at capturing conformational heterogeneity, with 
an average RMSDapo-holo of 3.20 Å, higher than both AFsample2
(2.38 Å) and AF-Cluster (2.15 Å). This capability is exemplified
by the EF-hand calcium-binding protein (EhCaBP; PDB IDs: 
Advanced Science, 2026
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FIGURE 4 Comparison with AF2-based methods on the apo-holo benchmarks. (a) Box plots illustrating the RMSD distribution of predicted 
structures relative to experimental references for AF2, AF-Cluster, AFsample2, trX2, and trX2-D, stratified by apo and holo states. Black diamonds 
denote mean values. (b) Head-to-head RMSD comparison between trX2-D and AF2-based methods. Point sizes are proportional to the magnitude of 
the performance difference. (c) Correlation between prediction accuracy and the magnitude of experimental conformational change (RMSDapo-holo ). (d) 
Evaluation of conformational heterogeneity, quantified by the pairwise RMSD between the two predicted states (RMSDapo-holo ). In the violin plots, the 
internal lines represent the quartiles (dashed) and median (solid). Dashed vertical and horizontal lines in the scatter plot mark a structural similarity 
cutoff of 2 Å. Arrows in the titles of (a) and (d) denote the direction of better performance. Individual points in (a) and (d) represent specific targets. 
(e) Representative case study (EhCaBP; PDB: 1JFJ/1JFK) illustrating the superior capability of trX2-D in capturing large-scale conformational dynamics 
(apo: red; holo: blue). 
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1JFJ/1JFK), which involves extensive inter-domain rearrange-
ments (RMSDapo-holo = 14.72 Å; Figure 4e ). While AF-Cluster
and AFsample2 remain trapped in a single conformation, trX2-D
successfully reveals the inherent structural plasticity associated
with this large-scale transition. 

To summarize, although AF2-based methods exhibit high accu-
racy driven by model complexity and data leakage issues, trX2-D
yields more significant improvements over its baseline and
excels in resolving conformational heterogeneity. These findings
underscore the effectiveness of our output-driven approach. 

2.6 Comparison with Cfold to Exclude Data 
Leakage Bias in AF2 

Current state-of-the-art methods for predicting multiple protein
conformations predominantly rely on the pretrained AF2 model.
Advanced Science, 2026
However, these methods are susceptible to data leakage issues
when evaluating on dual-conformation datasets, which can 
bias benchmark comparisons. To mitigate this bias, Cfold [ 10 ]
retrained the AF2 network on a strict data split, which is designed
to exclude any conformational redundancy between training and 
test sets. 

Therefore, benchmarking against Cfold on its rigorously con- 
structed test sets is crucial to eliminate the confounding effects
of data leakage. We evaluated our method on 20 targets from
this dataset, which exhibit substantial conformational changes 
and are non-redundant to the training sets of trX2-D. Each target
was annotated with “Fold1” and “Fold2” states (see Methods for 
details on dataset construction and annotation). The information
on these 20 conformation pairs is listed in Table S5 . 

During inference, Cfold employs two established strategies to 
generate multiple conformations: (1) “dropout”, which activates 
7 of 16
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FIGURE 5 Comparison with Cfold on 20 dual-conformation proteins from the Cfold benchmark. (a) Box plots illustrating the RMSD distribution 
of predicted structures relative to experimental references for Cfold, trX2, and trX2-D, stratified by Fold1 and Fold2 states (n = 20). Black diamonds 
denote mean values. (b) Head-to-head RMSD comparison between trX2-D and Cfold. Point sizes are proportional to the magnitude of the performance 
difference. (c) Correlation between prediction accuracy and the magnitude of experimental conformational change (RMSDFold1-Fold2 ). (d) Representative 
case study (ribosomal protein L11 methyltransferase; PDB: 2NKE/2ZBP) illustrating the superior capability of trX2-D in capturing large-scale fold 
switching (predicted: colored; experimental: gray). (e) Evaluation of conformational heterogeneity, quantified by the pairwise RMSD between the 
two predicted states (RMSDFold1-Fold2 ). In the violin plots, the internal lines represent the quartiles (dashed) and median (solid). Dashed vertical and 
horizontal lines in the scatter plot mark a structural similarity cutoff of 2 Å. Arrows in the titles of (a) and (e) denote the direction of better performance. 
Individual points in (a) and (e) represent specific targets. 
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dropout layers during neural network inference [ 26 ]; and (2)
“cluster”, which in volves subsampling input MSAs at varying
depths [ 16 ]. Notably, the term “cluster” here refers to the AF2
hyperparameter ‘ max_msa_clusters ‘ (which controls the maxi-
mum number of rows in the MSA representation), rather than
the DBSCAN clustering employed in AF-Cluster. 

The results on the Cfold dataset are detailed in Figure 5 and Table
S6 . As shown in Figure 5a , the two strategies employed by Cfold
exhibit similar performance, with the “cluster” strategy slightly
outperforming the “dropout” strategy, consistent with the original
Cfold benchmark results [ 10 ]. Our baseline model, trX2, remains
competitive with Cfold for the Fold1 state but underperforms on
the Fold2 state. This highlights the gap in complexity between
the baseline models, which becomes more pronounced when
predicting the more challenging Fold2 state. 

Despite this disparity, trX2-D achieves improvements for both
states, with gains being particularly significant for Fold2. Con-
sequently, trX2-D outperforms Cfold on Fold1 (RMSD: 2.95 vs
3.45 Å) and delivers competitive performance on Fold2 (RMSD:
 

8 of 16

e

4.75 vs 4.58 Å). Head-to-head comparisons in Figure 5b further
confirm the competitiveness of trX2-D. Furthermore, as illus-
trated in Figure 5c , trX2-D captures large conformational changes
more effectively than the compared methods (e.g., the case in
Figure 5d ). This finding, which aligns with results from the apo-
holo dataset, largely stems from trX2-D’s superior capability in
resolving conformational transitions (Figure 5e ). 

Collectively, these findings demonstrate that despite the 
lightweight architecture of trX2, our output-driven strategy 
effectively mitigates this limitation, ensuring competitive 
performance in rigorous benchmarks where data leakage is 
excluded. 

2.7 Application to Dynamic Structures 
Determined by NMR Spectroscopy 

The prediction of dynamic protein structures poses a more signif-
icant challenge compared to that of proteins exhibiting only two
stable conformational states. To evaluate the capabilities of trX2-
Advanced Science, 2026
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D in this context, we applied it to a benchmark dataset comprising
31 proteins with dynamic structures solved by NMR spectroscopy.
Evaluation was restricted to well-restrained residues to ensure
data quality (see Methods for details). 

For a balanced comparison, we first quantified the ability of
the predicted ensembles to cover the native ensemble using
RMSDrec (where “rec” refers to “recall”), defined as the average
RMSD between each NMR model and its nearest neighbor in the
predicted ensemble: 

RMS Drec =
1 
𝑁 

𝑁 ∑
𝑖= 1 

[
min 𝑃∈ RMSD (𝑆𝑖 , 𝑃) 

]
(1)

where N is the total number of NMR structure models, Si 
refers to the i- th NMR model,  represents the set of predicted
conformations, and the minimum RMSD is found by comparing
Si to each prediction P within the set  . 

Similar to the above experiments, we compare trX2-D with
trX2 and AF-based methods on this dynamic protein dataset.
As shown in Figure 6a , trX2-based methods generally exhibit
slightly higher RMSDrec values than AF2-based methods, likely
reflecting trX2’s lighter architecture and potential data leakage
in AF2 training, as 29 of the 31 proteins were released before the
AF2 training cutoff (May 2018). However, trX2-D demonstrates a
most significant improvement over the baseline model, achieving
an RMSD reduction of over 1.69 Å compared to trX2 (P-value:
0.00019). In contrast, AF-sample2 shows no statistically signif-
icant improvement (P-value:0.563), while AF-Cluster exhibits a
decline in performance with an RMSD increase of 1.37 Å. 

Beyond accuracy metrics, capturing the capacity to sample
diverse structures is a prerequisite for characterizing protein
dynamics. Evaluating ensemble diversity via mean pairwise
RMSD (Figure 6b ) shows that trX2-D generates the most hetero-
geneous predictions (4.22 Å), significantly exceeding trX2 (2.30
Å) and AF2-based methods (1.98–2.84 Å). Notably, AF-Cluster
fails to capture conformational heterogeneity for these targets,
exhibiting the lowest pairwise RMSD (0.71 Å), even lower than
the original AF2. This failure correlates with the difficulty of
clustering the shallow MSAs available for these NMR proteins
(Figure S7 ). These results highlight the unique potential of trX2-D
to explore the conformational landscape even when evolutionary
information is too sparse for MSA-based strategies. 

To further assess the overall quality of the generated ensem-
bles, we calculate RMSDmean , defined as the average RMSD of
all predicted conformations against the average conformation
derived from the NMR ensemble. As shown in Figure S8 , the
more diverse ensemble generated by trX2-D does not compromise
structural quality relative to the trX2 baseline. In contrast, both
AF-Cluster and AFsample2 exhibit slight degradation compared
to the original AF2. These results indicate that trX2-D effec-
tively enhances conformational coverage and diversity without
sacrificing ensemble quality. 

To illustrate improved conformational sampling, we visualize
the conformational spaces of the 3 samples that exhibit signif-
icant structural heterogeneity even within regions defined by
Advanced Science, 2026
sufficient experimental restraints (Figure 6c ). Intriguingly, we 
observed that the structural heterogeneity in these cases often
involves intrinsically disordered regions (IDRs) or highly flexible 
loops. These regions pose a considerable challenge for AF2 and
AFsample2, which are primarily trained on stable, well-ordered 
structures and thus tend to underestimate dynamics. Conse- 
quently, predictions from AF2-based methods are often confined 
to narrow basins in the independent component analysis (ICA)
projections (Figure 6c ), covering only a limited spectrum of
the experimental conformational landscapes. In contrast, trX2-D 

generates a more diverse set of predictions that span a broader
conformational range. This enables trX2-D to more effectively 
capture the structural flexibility inherent in these disordered
regions, and consequently yields more diverse ensembles than 
the AF2-based approaches (as evidenced by the higher pairwise
RMSD). This observation is reinforced by per-residue root mean
square fluctuation (RMSF) analysis restricted to well-restrained 
residues (Figure S9 ). For these highly flexible samples, AF2 and
AFsample2 underestimated structural fluctuations compared to 
the NMR ensemble, whereas the fluctuations captured by trX2-
D models closely correspond with those of the NMR states,
reflecting a more accurate depiction of protein flexibility. 

We further assessed the agreement between predicted ensembles 
and NMR observables. First, we analyzed backbone flexibility 
using ensemble-derived [ 27 ] generalized order parameters [ 28, 29 ]
(S2 ensemble ), which quantify the spatial restriction of bond vector
motions (see Methods for details). We evaluated the Pearson cor-
relation (r) between the predicted and reference (NMR) profiles,
focusing exclusively on well-restrained residues. As shown in 
Figure S10 , trX2-D exhibits the highest median correlation (0.504)
with the reference NMR ensembles, significantly higher than 
AF2-based methods (0.076-0.201). This demonstrates the superior 
capability of trX2-D in capturing the correct backbone dynamics.

Second, we evaluated global structural orientation using residual
dipolar coupling [ 30 ] (RDC). Unlike local distance constraints,
RDCs capture the orientation of specific chemical bonds with
respect to a global alignment frame, thereby offering a rigorous
metric for overall structural topology. The agreement with exper-
imental data was quantified by the Q-factor [ 31 ] (lower is better,
see Methods). Among the 31 NMR targets, only two possess high-
quality experimental data suitable for this analysis (PDB IDs:
2M3E and 2M6M). For 2M3E, trX2-D achieves the lowest Q-factor
(0.12), superior to trX2 (0.35) and AF2-based methods (0.90–
1.35) (Figure S11 ), confirming that our ensemble captures realistic
orientational dynamics rather than stochastic noise. However, 
for target 2M6M, all methods exhibit significant deviation from
the experimental values (Q-factors > 0.6). As shown in Figure
S11c , while these methods roughly identify the correct flexible
regions, they fail to capture the precise spatial orientation of
these fluctuations relative to the core, leading to the observed
discrepancy with the experimental RDC profile. This highlights
the persistent challenge of accurately modeling the directionality 
of structural dynamics in many cases. 

Capitalizing on the unique advantages of NMR in capturing
protein dynamics, future improvements may involve incorporat- 
ing NMR data and restraints directly into model training [ 32 ].
This approach would ensure that the network learns genuine
biological dynamics rather than fitting to artificial noise. 
9 of 16
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FIGURE 6 Benchmarking on the NMR dynamic protein dataset. (a, b) Comparative evaluation of ensemble generation methods across 31 NMR 
targets (n = 31). (a) Assessment of ensemble coverage, quantified by RMSDrec (the minimum RMSD of the predicted ensemble relative to each 
experimental conformation). (b) Evaluation of ensemble diversity, measured by the mean pairwise RMSD within the predicted ensemble. In the 
box plots, black diamonds denote mean values, while individual points represent specific targets. Arrows in the panel titles denote the direction of 
better performance. (c) Visualization of conformational landscapes for three representative targets exhibiting significant structural heterogeneity (PDB 
IDs: 2FFT, 2NDJ, 2K4F). Landscapes are projected onto the first two independent components (IC1 and IC2) derived from independent component 
analysis (ICA) of C α coordinates. Density contours (orange) represent the distribution of the experimental NMR ensemble, while blue stars mark the 
conformations predicted by each method. The corresponding experimental ensembles are depicted as rainbow-colored cartoons on the left. 
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3 Discussion 

Structural heterogeneity underpins protein function [ 33 ], yet
predicting multiple protein conformational states remains a
formidable challenge. Current mainstream methods primar-
ily utilize the multi-conformational information embedded in
MSA (i.e., input-driven strategies) [ 10, 15, 16 ]. In contrast, ear-
lier studies have shown that de novo -predicted contact maps
obtained through deep learning often contain structural infor-
mation about multiple states [ 13 ]. Motivated by this insight, we
observed that the predicted 2D geometries also encode such
information, as revealed by their multi-peaked distributions
(Figure S15 ). However, a systematic approach to utilize 2D
geometries for predicting multiple conformations has remained
unexplored. 

Building upon this observation, we introduce trX2-D, an auto-
mated approach for predicting alternative protein conforma-
tions by employing a heuristic iterative sampling process on
the 2D geometries predicted by trX2. Table S7 provides a
specific contrast between trX2-D and input-driven strategies,
detailing their respective mechanisms, advantages, and limita-
tions. In contrast to existing input-based methods, trX2-D, as
an output-driven sampling method, is capable of generating
more diverse conformations even without prior knowledge of
specific structural states, as its sampling is directly performed
on the de novo -predicted structural restraints. We have rigor-
ously assessed trX2-D with three independent datasets, including
two dual-conformation sets and one dynamic structure set.
Benchmarking results demonstrate that trX2-D significantly out-
performs trX2 in predicting alternative conformations. Notably,
when evaluating the magnitude of improvement relative to the
respective baselines, trX2-D outperforms AF2-based methods
(AF-Cluster and AFsample2), despite the inherent architectural
gap between trX2 and AF2. By modulating predicted geome-
try rather than sequence inputs, trX2-D successfully captures
broader conformational heterogeneity that is often inaccessible
to MSA-based strategies. This independence from evolutionary
depth also positions trX2-D as a promising tool for challenging
systems, such as orphan proteins lacking sufficient sequence
homologs. 

Moreover, our output-driven strategy offers a unique advantage:
interpretability. The use of energy-based sampling facilitates
the construction of an energy landscape, exemplified by the
classic Adenylate Kinase (AdK) case, where energy variations
physically elucidate the conformational switching pathway. Fur-
thermore, physical energy scoring enables the exclusion of
energetically unfavorable conformations. For instance, filter-
ing out structures with outlier Rosetta energies (see Methods)
slightly improves ensemble quality for nearly all targets (90.3%,
28/31) in the NMR benchmark, with minimal compromise
to accuracy (Figure S12 ). Although CPU-based minimization
currently results in longer inference times (Table S8 ), this rep-
resents a technical rather than a conceptual bottleneck. This
limitation is addressable by transitioning from the PyRosetta
framework to GPU-accelerated frameworks, such as integrating
high-performance simulation backends or differentiable force
fields [ 34, 35 ]. 
Advanced Science, 2026
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trX2-D’s slightly lower accuracy compared to AF-Cluster reflects 
the architectural gap between trX2 and AF2 (Figure S1 ) and AF2’s
data leakage (Tables S2 and S8 ), rather than methodological infe-
riority. We addressed the leakage concern in the Results section
by benchmarking against Cfold, which represents an AF2 variant
free from data leakage bias. Moreover, to rigorously compare the
sampling strategies themselves, we implemented MSA clustering 
on trX2 (trX2-Cluster). Notably, trX2-D outperforms trX2-Cluster 
across all states (Figure S13 ), validating that our heuristic iterative
strategy is more effective than MSA clustering within the trX2
framework. 

Subsequently, we explore applying our heuristic iterative strat-
egy to AF2-predicted distance maps (AF-HIS), but observe no
improvement over the standard, end-to-end AF2 (Figure S14a ).
This is likely due to the superiority of the AF2 structure module
over PyRosetta minimization and the lack of dynamic signals
in AF2’s sharp, unimodal distance distributions (Figure S15 ).
Inspired by findings that shallow MSAs may induce multi-
conformational signals in AF2 [ 15, 16 ], we filter each MSA using
HHfilter [ 36, 37 ] to retain only 10 representative sequences. While
this slightly increased the diversity of AF2 distance distributions
(AF2 (shallow) in Figure S15 ), it still fell short of the diversity
observed in trX2. To decouple the sampling effect from the
structure module’s bias, we performed energy minimization 
based on AF2-predicted distances (AF-Rosetta). Using shallow 

MSAs, AF-HIS improved upon the holo-preferred AF-Rosetta 
in predicting the apo state for 70.2% (26/37) of cases (Figure
S16b ), particularly for targets with large conformational changes
(Figure S16c ). However, the gains were smaller than those with
trX2, highlighting a limitation of geometry-based sampling: it 
depends on multi-state signals in 2D geometries and struggles
when predictions are highly confident in a single state. 

Another challenge, which is common for all the existing multi-
conformation prediction methods, is the automated and efficient 
selection of biologically meaningful conformations from the 
generated ensembles. While trX2-D excels at generating diverse 
conformational ensembles, it still faces the challenge of selecting
representative conformations, especially for dual-conformation 
proteins. Preliminary efforts using k-means clustering based on 
standard structural similarity metrics (TM-score, RMSD, and 
inter-C α distances [ 38 ]) proved insufficient, as illustrated by the
0.2 ∼ 0.3 Å higher RMSDs in average after clustering (Figure S17 ).
This indicates a promising future direction for advancing multi-
state structure prediction, that is, exploring more sophisticated
conformation selection/clustering strategies to better identify 
biologically meaningful conformations from generated struc- 
tures. Notably, the efficacy of energy-based filtering (Figure S12 )
underscores that incorporating broader physical, experimental, 
and biological constraints, such as experimental B-factors and 
functional site conservation, represents a promising avenue for 
future improvements. 

Conformation generation in trX2-D is primarily powered by 
energy minimization, which involves both predicted 2D geome- 
tries and physical energy terms from Rosetta. Recently, generation
models, especially the diffusion models, have shown promise
in protein structure generation [ 39–42 ]. However, due to the
11 of 16
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lack of physical restraints, these generative models alone may
struggle to generate conformations that obey the Boltzmann
distribution. While several methods (e.g., CONFDIFF [ 43 ], DiG
[ 44 ]) have made strides in incorporating physical guidance into
diffusion and/or sampling procedures, accurately defining force
fields and efficiently selecting biologically meaningful confor-
mations continue to be major challenges. The path forward
will likely involve a more sophisticated integration of deep
generative models with physical/biological restraints, not only
to improve the effectiveness of generating diverse conformations
but also to better capture those allosteric transitions critical for
protein function [ 32 ]. Furthermore, extending predictions from
equilibrium states to dynamic folding pathways has emerged as
a promising frontier, capturing growing attention in the field [ 45,
46 ]. 

4 Methods 

4.1 Construction of Datasets 

We constructed three benchmark datasets and two training sets,
with rigorous filtering to ensure no redundancy between training
and testing (Table S10 ). 

4.1.1 Test sets 

Three benchmark datasets were constructed in this work. The
first dataset consists of 37 apo-holo protein pairs collected from
a recent work by Saldano et al., [ 20 ]. From their original set of
91 pairs, 87 with identical sequences between the apo and holo
states were initially selected. To focus on pairs with substantial
conformational differences, we only retained the 37 protein pairs
with significant conformational change, defined as having a TM-
scoreapo-holo value below 0.8 or an RMSDapo-holo value above 6 Å.
While a TM-scoreapo-holo of 0.8 was frequently used as the cutoff
to identify significant conformational changes [ 10, 13, 17 ], our
analysis revealed cases where high TM-scores between states can
also coincide with substantial structural differences, as indicated
by RMSDapo-holo values exceeding 6 Å (Figure S18 ). For example,
for the DAHPS enzyme, the transition between states involves
significant interdomain variation (apo PDB ID: 1RZM, holo PDB
ID: 1VR6; Figure S18a ). However, its TM-scoreapo-holo value was
over the 0.8 cutoff. Therefore, to ensure a robust evaluation, we
incorporated such cases into our benchmark set. 

The second dataset was obtained from the Cfold benchmark
set [ 10 ], which includes 243 dual-conformation proteins with
pairwise TM-score < 0.8. For consistency, we only considered 155
samples for which Cfold provided the predicted structures in
its Zenodo repository ( https://zenodo.org/records/10837082 ). To
prevent data leakage, we further filtered this dataset using the
cd-hit [ 47, 48 ] (V4.8.1) program at a 40% sequence identity
threshold relative to our training set. After this step, we removed
samples with sequence lengths > 300 to save computational time,
resulting in 20 unique samples. For confirmation annotation, we
categorized proteins based on the RMSD of their AF2 predictions.
For each conformation pair, the conformation with lower RMSD
in at least 3 out of 5 AF2 predictions was labeled as “Fold1”, while
the other conformation in the pair was designated as “Fold2” [ 17 ].
12 of 16
The third dataset was derived from the 292 dynamic proteins
identified by NMR spectroscopy, reserved from the dataset used
to fine-tune trX2 (see below), each protein with an average
of 19 NMR models. The proteins sharing over 30% sequence
identity relative to all the training sets were excluded, resulting
in 118 samples. To ensure initial conformational diversity, only
ensembles with a minimum pairwise TM-score below 0.8 or a
maximum pairwise RMSD over 6 Åwere retained, resulting in 92
proteins. Subsequently, 29 proteins were excluded due to insuffi-
cient MSA depth ( < 10) for running AF-Cluster. Furthermore, one
protein (PDB ID: 6XRY) with extreme conformational dynamics 
(maximum pairwise RMSD = 33.9 Å) was also excluded, as all
evaluated methods failed to generate structure ensembles for this
target, resulting in an intermediate set of 62 proteins. 

To ensure our analysis was rigorously validated against experi-
mental evidence, we further restricted the dataset to 44 targets
with available NMR restraint files. For these proteins, we focused
our analysis exclusively on residues within well-defined core 
regions, defined as those supported by at least two non-sequential
Nuclear Overhauser Effect (NOE) restraints (sequence separa- 
tion ∣ i − j ∣ ≥ 2). Finally, we re-evaluated the conformational
diversity within these core regions using the aforementioned 
thresholds (TM-score < 0.8 or RMSD > 6 Å), yielding a final
curated dataset of 31 proteins with significant conformational 
dynamics. 

Duplicate samples across the above three datasets were removed
to eliminate redundancy. The final datasets consist of 37 apo-
holo proteins, 20 two-state proteins, and 31 dynamic proteins,
respectively. 

4.1.2 X-Ray Training Set 

This training set was derived from the 15 051 X-ray protein chains
collected in trRosetta [ 5 ]. These proteins were non-redundant
(sequence identity < 30%), released before 2018-05-01 in the
PDB database, resolved by X-ray crystallography, and have pre-
constructed MSAs with at least 100 homologous sequences. To
prevent data leakage during benchmark evaluations, any training 
set chains sharing > 50% sequence identity with proteins in the
benchmark test set were removed, resulting in a final training set
of 14 275 chains. 

4.1.3 NMR Training Set 

This training set was derived from a dataset of 8038 monomeric
proteins with experimentally determined dynamic structures 
from NMR spectroscopy. A two-stage filtering procedure was 
employed to ensure non-redundancy and prevent data leakage. 
First, the chains were clustered at 60% sequence identity using
CD-HIT. 95% of the resulting 4746 clusters (7454 chains) were
randomly selected for the initial training set, while the remaining
5% of clusters (292 chains) were reserved for the test set construc-
tion. Second, to further prevent data leakage during benchmark
evaluations, any training chains sharing > 50% sequence identity
with proteins in the benchmark test set were removed, resulting
in a final training set of 7269 chains. 
Advanced Science, 2026
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4.2 Experimental Setup 

4.2.1 MSA Generation 

MSAs for all proteins were generated using MMseqs2 [ 49 ]
(v13.45111) by searching the UniRef50 database (E-value thresh-
old: 0.001; maximum 20 000 target sequences per query). Unless
otherwise specified, these MSAs served as the common input
for all structure prediction methods to ensure fair compari-
son. 

4.2.2 Compared Methods 

We compared trX2-D to the following structure prediction
methods: 

4.2.2.1 trRosettaX2 (trX2). The trX2 protocol was used to
predict 2D geometric constraints from the input MSA, which
guided structure folding via energy minimization in Rosetta. To
sample diverse conformations, rather than relying on a fixed
end-to-end prediction, we executed 50 independent energy mini-
mization processes for each target. These processes incorporated
randomness in both their initialization and optimization steps,
ultimately yielding an ensemble of 50 structures. 

4.2.2.2 AlphaFold2 (AF2). The standard AlphaFold2 with-
out structural templates was used to generate predictions. For
each target, an ensemble of 50 models was produced using
distinct random seeds. 

4.2.2.3 AF- Cluster. Following the AF- Cluster pipeline,
each target’s MSA was clustered using the DBSCAN algorithm
with default configurations, yielding 2 ∼ 566 sub-MSAs per target.
AlphaFold2 (without templates) was run on each sub-MSA
individually, producing one structure per sub-MSA and thus a
total ensemble of 2 ∼ 566 structures per target. 

4.2.2.4 AFsample2. We utilized the official AFsample2
implementation with default settings to generate 100 conforma-
tions. Specifically, predictions were derived from 100 randomly
subsampled MSAs (key parameters: –msa_rand_fraction 0.20,
–nstruct 100). 

4.2.2.5 Cfold. The Cfold predictions were obtained directly
from the published dataset on the Zenodo repository ( https://
zenodo.org/records/10837082 ). We specifically used structures
generated by Cfold’s MSA clustering strategy, which was reported
to outperform the alternative dropout strategy in the original
study. 

4.2.3 Evaluation Metric 

The accuracy of the predicted models was evaluated by RMSD.
For each experimentally determined conformation of a target,
RMSD values comparing all generated structures against this con-
formation were computed utilizing the TM-score [ 50 ] program.
Then the minimum RMSD value was selected to represent the
accuracy for that specific conformation. 
Advanced Science, 2026
4.3 Order Parameter Analysis 

While generalized order parameters ( S2 ) typically characterize 
time-dependent fluctuations derived from molecular dynamics 
trajectories, they can also be adapted to quantify the spatial
restriction of bond vectors within a conformational ensemble 
[ 27 ]. Here, we calculated ensemble-derived generalized order
parameters ( S2 ensemble ) to estimate the backbone flexibility of each
ensemble. Since the definition of N–H bond vectors requires
explicit protons, missing hydrogens in AF2-based structures 
were reconstructed using PDBFixer [ 51 ] ( https://github.com/
openmm/pdbfixer ), whereas the experimental and trX2-based 
structures were processed with their existing explicit hydrogens. 
The order parameter for residue j was then computed as the
squared norm of the ensemble-averaged unit vector: 

𝑆2 𝑒 𝑛𝑠 𝑒 𝑚𝑏 𝑙𝑒 ,𝑗 = ∥
1 
𝑁 

𝑁 ∑
𝑛= 1 

𝜇⃗𝑗,𝑛 ∥
2 (2) 

where 𝑁 was the ensemble size and 𝜇⃗𝑗,𝑛 represents the N–H unit
vector of the n -th conformer. To quantify predictive accuracy,
we calculated the Pearson correlation coefficient ( r ) between
predicted and reference profiles, restricting the analysis to "well-
restrained" residues (as defined in the "Construction of datasets"
section). Notably, AF-Cluster could not be evaluated for 14 targets
because its predictions collapsed into single conformations; this
resulted in uniform S2 ensemble values of 1.0 across all residues
(zero variance), precluding the calculation of Pearson correlation 
coefficients. 

4.4 Residual Dipolar Coupling (RDC) Analysis 

Experimental 1 H–1 5 N RDC data were available for four proteins in
the NMR test set. Calculating RDCs for predicted conformations
requires a reference alignment tensor derived from the deposited
NMR ensemble, which characterizes the global orientation of the
molecule relative to the alignment medium. For the evaluation
of predicted structures, we employed an ensemble-based fitting 
protocol using the calcTensor module in Xplor-NIH [ 52, 53 ].
The alignment tensor was then fitted directly to this predicted
ensemble using the “-ensemble” argument. Subsequently, this 
alignment tensor was applied to the predicted ensembles to
calculate RDCs [ 54 ]. 

For each predicted ensemble, the agreement with experimental 
data was quantified via the Q-factor [ 31 ], defined as the root-
mean-square (RMS) deviation between the two RDC profiles,
normalized by the RMS of the experimental values. To ensure the
reliability of the analysis, we excluded targets where the Pearson
correlation ( r ) between experimental and back-calculated RDCs
(for the reference structure) was less than 0.8, due to potential
artifacts from internal dynamics [ 55 ]. This yielded a final dataset
of two proteins (PDB IDs: 2M6M and 2M3E). 

4.5 NMR Fine-Tuning of trRosettaX2 

To improve the ability to capture the conformational changes,
we fine-tuned the pretrained trX2 (described in Text S1 ) on the
13 of 16
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dynamic structures from the NMR training set. The loss function
was adapted to consider all the conformations of each sample.
Specifically, for each protein, we computed the loss function
between the predicted structure and all native conformations and
selected the minimum loss for backpropagation. This process can
be written as: 

NMR = 𝑚𝑖𝑛 
𝑌∈𝑆Conformation 

1 
4𝑁2 

𝑁 ∑
𝑖= 1 

𝑁 ∑
𝑗= 1 

∑
𝑔∈{ 2D geometries } 

𝐶𝐸
(
𝑃𝑔 ( 𝑖, 𝑗 ) , 𝑌𝑔 ( 𝑖, 𝑗

(3)
where SConformation refers to the set of native conformations;
N was the number of residues; CE () was the cross-entropy
function; Pg ( i , j ) was the predicted probability distribution for
the 2D geometry g between residues i and j ; Yg ( i , j ) was the
corresponding ground truth one-hot encoding derived from the
native conformation Y . 

Throughout the training, we used the Adam optimizer with a
learning rate of 0.0001 to minimize the loss function ℒNMR . 

4.6 Heuristic Iterative Process for trX2-D 

The heuristic iterative process in trX2-D was designed to gen-
erate a diverse ensemble of protein conformations from the 2D
geometries predicted by trX2 and trX2 (NMR). At each iteration,
geometry information from the prior iteration’s 3D conformation
was selectively excluded from the current 2D geometries. These
updated 2D geometries were subsequently used to generate a new
conformation through energy minimization. Sufficient iterations
of this process can yield a diverse conformational set. This
procedure is illustrated in Figure 1C and Figure S2 . 

Formally, let 𝑛 denote the set of 2D geometries (1 distance + 3
orientations) at the n -th iteration. Sn was the corresponding 3D
structure generated through energy minimization based on 𝑛 .
The n -th iteration aims to update 𝑛 and Sn to 𝑛+ 1 and Sn + 1 ,
respectively. Once the iteration process terminates, all generated
structures, { Sn }, were collected to form the predicted ensemble of
conformations. 

For convenience, let 𝑝𝑛 ∈𝑛 represent the probability distribution
of one of four defined geometries for a specific pair of residues.
A sharp and unimodal pn signifies a highly stable geometric
relationship between the corresponding residue pair, while a
broad or bimodal pn may imply variability for this residue
pair. Based on this hypothesis, we design a decay-and-smooth
procedure to update pn to pn + 1 (Figure S2 ), which is detailed as
follows ( ‖ ⋅ ‖∞ refers to the L∞ norm): 

1. if ‖pn ‖∞ < 0.5, indicating potential conformational variation
at this residue pair, pn will be decayed based on the geometry
value calculated for the corresponding residue pair in the
3D structure Sn . This operation was intended to remove
the information inherent in the previously generated 3D
conformation and to focus on the alternative conformation
information implied in the remaining distribution regions.
The decayed distribution was then normalized and smoothed
with a Gaussian filter to ensure structural regularity during
energy minimization (see Figure S19 for an example). 
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2. if ‖pn ‖∞ ≥ 0.5, indicating this residue pair was highly stable,
pn will remain unchanged. 

In total, the update rule is defined as: 

𝑝𝑛+ 1 =
{ 

( 𝑓◦𝑔 ) ( 𝑝𝑛 − 0 . 5𝑝𝑛 ⊙ 𝑝𝑠 𝑛 ) , | |𝑝𝑛 | |∞ < 0 . 5 
𝑝𝑛 , | |𝑝𝑛 | |∞ ≥ 0 . 5 

(4) 

where ⊙ denotes element-wise multiplication, g represents nor- 
malization, and f denotes Gaussian smoothing. 𝑝𝑠 𝑛 refers to 
the distribution (i.e., one-hot coding) calculated from the 3D
structure Sn . 

The updated 2D geometries 𝑛+ 1 were obtained by updating all
four types of geometry across all residue pairs in the protein.
These updated geometries were then used to generate a new
conformation Sn + 1 . The iterative process terminates when the 
distributions for all residue pairs have converged (change < 0.01).
To exclude energetically unfavorable conformations, we filter out 
structures with energy values exceeding the 75th percentile plus
the interquartile range (IQR). 

4.7 Implementation of Energy Minimization 

Following the trRosetta protocol [ 5 ], calculations were performed
using PyRosetta (version 2024.39 + release.59628fb). A two-stage 
protocol comprising coarse-grained (centroid) minimization and 
full-atom refinement was implemented. First, centroid models 
were optimized using the quasi-Newton MinMover (L-BFGS 
algorithm, lbfgs_armijo_nonmonotone) with a maximum of 1000 
iterations and a convergence tolerance of 10− 4 . The scoring
function integrated predicted restraints with standard centroid 
terms using the following weights: AtomPair (5.0), Dihedral (4.0),
Angle (4.0), Ramachandran preference (rama, 1.0), omega torsion
(omega, 0.5), steric repulsion (vdw, 1.0), and backbone hydrogen
bonding (cen_hb, 1.0). Subsequently, models were converted to 
full-atom representations and refined using FastRelax with the 
ref2015 scoring function. During relaxation, restraint weights 
were adjusted to AtomPair (4.0), Dihedral (1.0), and Angle (1.0). 

4.8 Statistical Analysis 

Data were presented as data points or distributions. The sample
size (n) for each analysis was specified in the corresponding
paragraph. One-sided Student’s t -tests were employed to assess
the statistical significance of performance improvements. Signif- 
icance was defined as P-value < 0.05, and specific P-values were
reported in the corresponding paragraph. All statistical analyses 
were performed using Python 3.10 (utilizing the Pandas, SciPy,
and NumPy libraries). 
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