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ABSTRACT
Biomolecular structure prediction has reached an unprecedented level of accuracy, partly attributed to the use of advanced deep 
learning algorithms. We participated in the CASP16 experiments across the categories of protein domains, protein multimers, 
and RNA monomers, achieving official rankings of first, second, and fourth (top for server groups), respectively. We hypothe-
sized that by leveraging state-of-the-art structure predictors such as AlphaFold2, AlphaFold3, trRosettaX2, and trRosettaRNA2, 
accurate structure predictions could be achieved through careful optimization of input information. For protein structure predic-
tion, we enhanced the input sequences by removing intrinsically disordered regions, a simple yet effective approach that yielded 
accurate models for protein domains. However, fewer than 25% of the protein multimers were predicted with high quality. In 
RNA structure prediction, optimizing the secondary structure input for trRosettaRNA2 resulted in more accurate predictions 
than AlphaFold3. In summary, our prediction results in CASP16 indicate that protein domain structure prediction has achieved 
high accuracy. However, predicting protein multimers and RNA structures remains challenging, and we anticipate new advance-
ments in these areas in the coming years.

1   |   Introduction

Protein structure prediction has been transformed by the Nobel 
Prize-winning method AlphaFold2 (AF2) [1]. It is widely ac-
cepted that the challenge of single-domain protein structure 
prediction has been resolved.

However, predicting accurate models for certain types of pro-
tein monomers remains challenging, particularly in several 
specific cases. First, proteins with multiple domains present 
complexities in predicting domain orientations, even when in-
dividual domains are accurately modeled [2]. Second, loop re-
gions often exhibit greater flexibility compared to structured 
α-helices or β-strands, complicating modeling efforts [3]. Third, 

underrepresented proteins, such as those from viruses, typically 
lack sufficient homologous sequences in current databases, re-
sulting in shallow multiple sequence alignments (MSAs) and 
weaker co-evolution signals, which hinder model accuracy. 
Fourth, interactions with binding partners must be considered 
for accurate modeling, as demonstrated by the CASP16 target 
M1271. Lastly, proteins that adopt alternative conformations or 
exhibit dynamic structures pose additional challenges for accu-
rate predictions [4].

Another unresolved challenge is the prediction of multimeric 
protein structures. There are two primary approaches for pre-
dicting multimeric structures. The first approach is based on 
classical molecular docking, which aims to assemble subunit 
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structures by considering the physical and chemical comple-
mentarity between different subunits. Notable methods in this 
category include HDOCK [5] and ClusPro [6], which utilize fast 
Fourier transforms to expedite the search for optimal binding 
poses. However, this approach struggles to accommodate sub-
stantial conformational changes induced by binding. To address 
this limitation, the second approach focuses on co-folding, which 
predicts complex structures directly from protein sequences. 
Representative methods in this category include AlphaFold-
Multimer (AFM) [7], AlphaFold3 (AF3) [8], and RoseTTAFold 
All-Atom (RFAA) [9]. Notably, AF3 and RFAA are applicable to 
a wide range of complexes, including protein–protein, protein–
nucleic acid, and protein–small molecule interactions. Although 
AF3 can generate complex models with improved accuracy, ac-
curately modeling a significant portion of targets, such as an-
tibody–antigen interactions, remains challenging. Consistently 
predicting complex structures with high accuracy is still an 
open problem.

Inspired by the success of AF2, several deep learning-based 
approaches have emerged for predicting RNA 3D structures. 
Notable methods include trRosettaRNA [10], DRfold [11], 
RhoFold+ [12], DeepFoldRNA [13], RFAA [9], NuFold [14], 
RoseTTAFoldNA [15], and AF3 [8], which outperform tradi-
tional physics-based methods for automated structure pre-
diction. However, challenges persist due to the sparsity of 
experimental structures, the high flexibility and complexity of 
RNA structures, and difficulties in nucleotide sequence align-
ment. As demonstrated by the CASP [16] and RNA-Puzzles 
experiments [17], human intervention plays a crucial role in gen-
erating accurate models. Significant progress is still needed for 
automated and accurate RNA structure prediction.

We participated in the CASP16 experiments for both protein 
and RNA structure predictions. Our group achieved top rank-
ings: first for protein domains, second for protein multimers, 
and fourth (top server group) for RNA monomers. This paper 
outlines the main methodologies used and summarizes the key 
results from CASP16.

2   |   Methods for Protein Structure Prediction

2.1   |   Overall Strategy for Protein Structure 
Prediction

The protein structure prediction pipeline we employed in 
CASP16 consists of three main modules: sequence optimization, 
structure prediction, and model selection (see Figure  1a). The 
computational workflow begins with sequence optimization, 
where intrinsically disordered regions (IDRs) are predicted and 
removed from both the original query sequences and their cor-
responding multiple sequence alignments (MSAs) to improve 
structural modeling reliability. The structure prediction module 
then generates structural models using trRosettaX2 (trX2) [4], 
AlphaFold2 (AF2), and AlphaFold3 (AF3); both trX2 and AF2 
are run locally with the optimized sequences and MSAs, while 
AF3 is executed via its online server with the optimized se-
quences. Note that no structure refinement was applied. Finally, 
the model selection module ranks and clusters the predicted 
models to prepare them for final submission.

2.2   |   Sequence Optimization Module

This module focuses on optimizing three key elements at the 
sequence level: amino acid sequences, multiple sequence align-
ments (MSAs), and stoichiometry.

2.3   |   Amino Acid Sequence Optimization

Predicted IDRs are removed from the query sequences based 
on three considerations: IDRs are often unresolved in experi-
mental determinations; IDRs are predicted with low accuracy 
and may hinder high-accuracy modeling of other structured 
regions; some targets are too large to be submitted to the AF3 
server.

Specifically, we utilized DISOPRED3 [18] to predict IDRs. 
Removing IDRs at the N- or C-terminus does not impact sub-
sequent structure modeling. However, removing intermediate 
IDRs (e.g., between residues i and j) can introduce errors, as res-
idues i − 1 and j + 1 may be incorrectly connected. For trX2 and 
AF3, only terminal IDRs are removed. For AF2, we addressed 
this issue by modifying the residue_index feature in AF2's fea-
ture dictionary, ensuring that each residue in the optimized 
sequences retained its original numbering. This modification 
allows AF2 to handle the structure modeling correctly.

Please note that we did not attempt to reintroduce the removed 
residues into our submitted models, as these residues are fre-
quently unresolved in experimental structures unless their 
inclusion could result in more accurate models. For example, 
the experimental structure of the protein-RNA target M1271 
includes only 3276 out of a total of 5990 amino acids and nucle-
otides. However, when experimental structures partially cover 
the removed residues, our models may incur penalties (e.g., in 
H0258). This issue could be addressed by designating the incom-
plete models as templates in full-length modeling, potentially 
in future CASPs. However, specifying multimeric templates is 
currently not supported for AFM/AF3 and other methods, for 
which a solution is definitely invaluable.

2.4   |   MSA Optimization

The MSA construction process is largely consistent with our ap-
proach from CASP15 [2]. We searched multiple sequence data-
bases (uniclust30_2018, uniref30, BFD, and manually collected 
sequences) using HHblits [19], MMseqs2 [20], and JackHMMER 
[21], generating candidate MSAs for the original sequences. 
Optimal MSAs were selected by trX2 based on the probability 
of the top residue pairs in the predicted inter-residue distance 
matrix. Columns in the MSAs corresponding to predicted IDRs 
were removed. Notably, all MSAs were generated from the orig-
inal sequences; generating MSAs from IDR-removed sequences 
did not yield improvements based on our experience.

2.5   |   Stoichiometry Optimization

The stoichiometry for multimeric targets in Phase 0 is in-
ferred using two approaches. The first one is a template-based 
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approach, where the stoichiometry of a homologous template is 
transferred to the query target [22]. If no homologous templates 
are available, we employ an AF3-based trial-and-error method, 
submitting various subunit combinations to the AF3 server and 
assigning the stoichiometry that yields the highest-confidence 
structure model.

2.6   |   Structure Prediction Module

2.6.1   |   Monomer Structure Prediction

Monomer structures are predicted using trX2, AF2, and AF3. 
Both trX2 and AF2 are run locally with the optimized sequences 
and MSAs from the previous module. Since no open-source 
code for AF3 was available during the CASP16 experiment, we 
submitted the optimized sequences to the AF3 server to obtain 

predicted models. If a monomeric target originates from a mul-
timeric target, monomeric models are also derived from those 
multimeric models.

2.6.2   |   Multimer Structure Prediction

Multimer structures are predicted using the AF3 server and 
AFM. The optimized sequences were submitted to the AF3 
server with the default random seed to predict multimeric mod-
els. If the confidence score is low (< 0.7), we attempt up to five 
additional random seeds and select the model with the highest 
confidence score. AFM is run locally using the optimized se-
quences and MSAs from the previous module. For hetero multi-
mers, the MSA pairing in AFM is toggled based on whether the 
subunits come from the same or different species, in accordance 
with our recent study.

FIGURE 1    |    Structure prediction pipelines used in CASP16. (a) Protein structure prediction consists of three modules: Sequence optimization, 
structure prediction, and model selection. The top and bottom flowcharts in (a) are for monomeric and multimeric protein structure predictions, re-
spectively. (b) RNA structure prediction includes input preparation, structure prediction, and model selection.
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2.7   |   Model Selection Module

Predicted structure models are clustered based on pairwise 
similarities: TM-score for monomers and DockQ for multim-
ers. Representative models are selected from the clusters for 
submission based on their confidence scores: pLDDT for mono-
mers and pTM + ipTM for multimers. The primary distinctions 
among the groups, Yang-Server, Yang-Multimer, and Yang, lie 
in this module: models with the highest confidence scores are 
submitted by the server groups Yang-Server and Yang-Multimer 
for monomers and multimers, respectively; model rankings are 
manually reviewed and adjusted by the human group Yang. If 
the stoichiometry prediction in Phase 0 was incorrect, none of 
the models generated during this phase were utilized in Phase 
1. Conversely, if the prediction was correct, the Phase 0 models 
were incorporated into the pool of models generated in Phase 1 
prior to executing the model selection module.

3   |   Methods for RNA Structure Prediction

3.1   |   Overview About trRosettaRNA2 Algorithm

We developed trRosettaRNA2 (trRNA2) [23], an enhanced ver-
sion of trRosettaRNA [10], to directly predict RNA 3D structures 
from multiple sequence alignments (MSAs) in an end-to-end 
manner. Considering that the limited RNA 3D structure data 
may hinder the performance of deep learning-based methods, 
trRNA2 incorporates a dedicated secondary structure predic-
tion (SS) module. This module is pre-trained on a larger SS 
dataset (bpRNA [24]) to provide prior base-pairing information. 
The output of the SS module, along with the MSA embedding, 
is then fed into 12 RNAformer blocks [10] to update RNA repre-
sentations and predict 2D geometry. Finally, the 3D structure is 
generated either by an SS-aware structure module utilizing the 
updated representations or through energy minimization based 
on the predicted 2D geometry.

trRNA2 effectively improves RNA 3D structure prediction ac-
curacy compared to trRosettaRNA and achieves competitive 
performance with AF3, though requiring significantly fewer 
parameters and computational resources. A comprehensive de-
scription of the methodology and the complete benchmark re-
sults will be available in a forthcoming publication [23].

3.2   |   RNA Structure Prediction by Yang-Server 
in CASP16

As shown in Figure 1b, the RNA structure modeling in Yang-
Server was primarily powered by trRNA2 and RNAthreader 
[25], a template-based method developed in our lab. For each 
RNA target, we first predicted the structure using trRNA2. 
The MSA was generated by Infernal [26] searching against the 
RNAcentral database [27]. To enhance the diversity of our pre-
dictions, we also utilized secondary structures generated by 
several third-party tools, including SPOT-RNA [28], EternaFold 
[29], and the template-based method R2DT [30], as well as 
RNAthreader from our lab, as alternative inputs to trRNA2, in 
addition to its default prediction. Furthermore, for targets with 
available 3D templates, we performed template-based modeling 

using RNAthreader and FARFAR2 [31]. The resulting 3D struc-
tures from trRNA2 and RNAthreader (when applicable) were 
then assessed and ranked using an in-house deep learning-
based RNA quality assessment (QA) method (Liu et al. [22]). The 
top 5 ranked models were submitted as the Yang-Server predic-
tions. For larger RNAs exceeding 400 nucleotides and without 
templates, additional models from AF3 were included (R1241, 
R1248, R1250-R1254, R1283, R1290). Similar to proteins, nucle-
otide sequences for these large targets were manually submitted 
to the AF3 web server to generate predictions.

4   |   Results for Protein Structure Prediction

4.1   |   Overall Results of Protein Domains

According to the official assessment, among the 110 groups 
involved in protein domain structure prediction, Yang-Server 
ranks first (Figure 2a), while AF3-server is ranked 15th. A direct 
GDT-TS comparison between Yang-Server and AF3-server is il-
lustrated in Figure 2b (data available in Table S1). Yang-Server 
outperforms AF3-server for more than half of the targets, con-
firming the effectiveness of our sequence optimization. The av-
erage GDT-TS scores for Yang-Server and AF3-server are 87.61 
and 85.28, respectively, indicating that protein domain structure 
prediction has achieved a high level of accuracy.

However, two hard targets (T1226-D1 and T1207-D1) were 
modeled with GDT-TS scores below 60 for both Yang-Server 
and AF3-server. The target T1226-D1 is a small protein (123 
residues) from Turkey Avisivirus, which was solved by NMR but 
with poor quality [32]. The accuracy of the Yang-Server model1 
is low (GDT-TS 32.79, Figure  S1a), while the lower-ranked 
model, model2, demonstrates significantly higher accuracy 
(GDT-TS 67.01, Figure S1b), indicating that our model selection 
scheme still requires improvement.

The target T1207-D1 is a truncated domain consisting of 144 
residues (positions 776–919) from a viral polyprotein (Q9YLS4, 
2134 residues). The primary modeling challenge lies in the 20 C-
terminal residues, which were inaccurately predicted, resulting 
in a model of medium accuracy (Yang-Server model1 GDT-TS 
58.20, Figure S1c). This truncation may hinder the correct mod-
eling of this target. To address this, we extended the model by in-
cluding an additional 136 residues at the C-terminus (positions 
776–1056), enabling the generation of more accurate models. 
Screening the experimental structure against the pool of struc-
tural models revealed that accurate models (with GDT-TS scores 
over 90) were generated. Unfortunately, the model selection pro-
cess did not rank these models at the top. Model 5 submitted by 
Yang-Multimer is one such model, achieving a GDT-TS score of 
85.66 (Figure S1d).

4.2   |   Overall Results of Protein Multimers

In the official assessment (Figure 2c), our group, Yang-Multimer, 
is ranked second among 82 groups, with a Z-score slightly lower 
than that of the top group, KiharaLab (14.5 vs. 15.4). The AF3-
server is ranked ninth. A direct DockQ comparison of the mod-
els predicted by Yang-Multimer and AF3-server is presented 
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in Figure 2d (data available in Table S2). With the exception of 
two special targets, H1215 (nanobody) and T1249v2o (confor-
mational change), Yang-Multimer predicted other targets with 
at least acceptable quality (DockQ ≥ 0.23), compared to five by 
AF3-server. However, only 10 and 7 out of the 44 multimeric 
targets were predicted with high quality (DockQ ≥ 0.8) by Yang-
Multimer and AF3-server, respectively, suggesting that pro-
tein multimer structure prediction remains a challenging task. 
Below, we provide a few examples to illustrate both successes 
and shortcomings.

4.3   |   What Went Right?

The first example is the protein-RNA complex M1271, which 
comprises 16 protein subunits (10 unique subunits, denoted as 
s1–s10) and 1 RNA subunit (Figure  3a). The modeling of the 

entire complex target exceeds the capabilities of AF2 and trRo-
settaX2. Therefore, we utilized AF3 to predict the structures of 
its protein-RNA complex by optimizing the protein sequences. 
The optimized input sequences used to reproduce our model for 
this target can be found in Table S3.

The total number of tokens in this target is 5990, exceeding the 
AF3 server's limit of 5000. Since inter-subunit interactions are 
crucial for maintaining the conformation of certain subunits in 
this target, predicting the structure of each subunit separately 
is unlikely to yield accurate models. Additionally, assembling 
subunit models into complex models based on docking remains 
challenging, particularly in cases of induced fit.

The sequence optimization module allowed for the prediction 
of a reasonable complex structure model for M1271 using AF3 
(Figure  3b). Sequence-based disorder prediction indicated 

FIGURE 2    |    Overall results of the protein structure prediction in the official assessment. (a, c) sum (Z-score > −2.0) of the predicted monomer/
multimer models by the top 15 groups. The ranking scores are taken from the official website of CASP16. Yang-Server/Yang-Multimer and AF3-
server are highlighted with red and blue bars, respectively. (b, d) Head-to-head GDT-TS/DockQ comparison between Yang-Server/Yang-Multimer 
and AF3-server for monomer/multimer structure prediction. Note that only Phase 1 models were considered here to reduce the impact of other 
factors.

a b

c d
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that many regions in subunits s1, s2, and s4–s7 are disordered. 
After conducting trial-and-error tests with the AF3 server, a 
total of 2283 disordered residues were removed from the orig-
inal target, resulting in an input FASTA sequence with 3707 
tokens, which aligns well with the number of tokens (3276) 
in the experimental structure. The confidence score for the 
predicted model is approximately 0.6, indicating medium ac-
curacy. According to the official assessment, the global TM-
score of our model is 0.732, significantly higher than that of 
other groups, such as the AF3-server model, which scored 
0.389. Due to the token limit of the AF3 web server (5000 
tokens), the AF3-server model submitted during CASP16 
only included a portion of the subunits for this target. After 
CASP16, the release of the AF3 source codes allowed us to 
re-run AF3 locally using the complete sequences of M1271. 
The predicted model, presented in Figure  3c, exhibits a 

significantly different overall shape compared to the native 
structure. This further highlights the effectiveness of our se-
quence optimization strategy.

A total of 10 protein domains were officially assessed (Figure 3d). 
The average GDT-TS for our model is 84.64, compared to 73.51 
for the AF3-server model.

The second example, H1258, is a complex structure formed by 
LRRK2 and 14-3-3 (A1B2). With complete sequences, the model 
predicted by AF3 is inaccurate, reflected in a confidence score of 
less than 0.4. In this AF3 model, the DockQ score for the inter-
face between LRRK2 and 14-3-3 is below 0.2 (see Figure 3e, red 
cartoon). To address this, we extracted residues 861–1014 from 
LRRK2 and re-modeled their interaction with 14–3-3 using AF3. 
This approach yielded a model with a significantly improved 

FIGURE 3    |    Structure modeling for M1271 and H1258. (a) the experimental structure of M1271. (b) the predicted structural model of M1271 by 
Yang using optimized sequences via the AF3 server. (c) the predicted structural model of M1271 by AF3, using its original sequences (ran locally 
after CASP16 as the AF3 server has a limit of 5000 tokens). (d) a detailed analysis of the model in (b). The central structure is colored by chain; for 
the subunits indicated by arrows, the blue and green cartoons represent the predicted and experimental structures, respectively. (e) the predicted 
structural models for H1258, by Yang-Multimer and the group AF3-server, focusing on the region (942–977) of the LRRK2 subunit that interacts 
with the 14-3-3 subunits (in gray cartoon). The experimental structure is shown in green, while the predicted models are represented in blue (Yang-
Multimer) and red (AF3 server).

 10970134, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prot.70030 by Jianyi Y

ang - Shandong U
niversity L

ibrary , W
iley O

nline L
ibrary on [06/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



7

confidence score greater than 0.9. The DockQ score for the in-
terface in our model exceeds 0.7 (see Figure 3e, blue cartoon), 
which is substantially higher than that of the default AF3 model. 
This result suggests the importance of our sequence optimiza-
tion. However, as previously mentioned, our model may still 
exhibit lower scores when the full-length structure is assessed. 
One potential solution is to construct a full-length model using 
the partial model as a template. Unfortunately, specifying mul-
timeric templates is currently unsupported in AFM/AF3 and 
other methods. We are actively exploring ways to overcome this 
limitation.

The third example is T0257o. The sequence optimization mod-
ule successfully predicted this target as a homo trimer. However, 
when predicting the trimer model with the optimized sequence 
(positions 41–1236), the model exhibited two shoulders, with 
an overall confidence score of about 0.5. The region connecting 
these shoulders was modeled with low accuracy. Even after re-
moving the 217 N-terminal residues that formed a long alpha 
helix, a similar model was obtained. The residues 670–690 were 
modeled with low confidence, where the structure bends (high-
lighted by the dashed box in Figure  4a). We hypothesize that 
this may result from incorrect co-evolution signals between the 

FIGURE 4    |    Predicted structure models for the target T0257o. (a, b) predicted complex models for T0257o with sequences (a) 218–1263, and (b) 
218–795. The complex models are colored by confidence (i.e., pLDDT), in which red/blue indicates high/low confidence. (c) complex models predict-
ed using overlapping fragments. (d) predicted complex model of T0257o by assembling the models of the overlapping fragments. The rainbow color 
in (c, d) indicates the direction of each fragment.
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8 Proteins: Structure, Function, and Bioinformatics, 2025

two shoulders. Consequently, we submitted a shorter sequence 
(positions 218–795) to the AF3 server, which produced a model 
with a significantly higher confidence score (0.84, Figure  4b). 
This model no longer bends at residues 670–690, confirming our 
hypothesis.

Based on the above observation, we divided the sequence into 
three overlapping segments (Figure 4c) and submitted them to 
the AF3 server to generate structural models. All segments were 
modeled with high confidence, with the overlapping regions act-
ing as “glue” to connect the individual segments. Specifically, 
the full-length model (Figure  4d) was predicted by iteratively 
superimposing the segment models using the TM-score pro-
gram based on the overlapping regions. The resulting model 
may exhibit steric clashes or breaks at the segment boundaries, 
which could be improved through refinement. The DockQ score 
for this model is 0.783, compared to 0.197 for the default AF3-
server model.

The fourth example is T1269, which is a filament. The se-
quence optimization indicated that residues after position 
1250 are largely disordered, which were thus removed during 

the modeling. When predicting it as a monomer, the model 
achieved a relatively high confidence score (0.81). However, 
the residues 690–726 in the model were estimated with very 
low accuracy (pLDDT < 30, Figure  5a). We attempted to im-
prove the quality by modeling the target as a dimer, trimer, 
and tetramer, but without success. Given that multiple tem-
plates exist for this target, we examined the alignments be-
tween this target and the templates. The alignment with 
template 7KWO_V (Figure  5c) indicated a segment deletion 
between A726 and P727. Based on this alignment, we man-
ually inserted a segment of 19 amino acids into the target se-
quence and modeled the structure with the new sequence. The 
inserted segment was simply removed from the model for sub-
mission. Thus, A726 and P727 will be distant in the predicted 
structure without forming a peptide bond. In fact, the segment 
G721-P727 was not resolved in the experimental structure of 
this target, reflecting that similar difficulty might be faced 
during the structure determination by Cryo-EM. This modi-
fication significantly improved the pLDDT scores for residues 
690–726 in the new model to over 80 (Figure  5b). With this 
enhanced model and the filament template 7A5O, we success-
fully constructed its filament structure (Figure 5d).

FIGURE 5    |    Predicted structure models for the target T1269. (a) and (b) are the monomeric models before and after segment insertion, respective-
ly. The structure is colored by confidence (i.e., pLDDT), in which red/blue indicates high/low confidence. (c) is the alignment between T1269 and the 
template 7KWO_V, indicating a segment insertion between A726 and P727 is needed for the target. (d) is the filament structure model built with the 
improved model in (b) and the template 7A5O.
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4.4   |   What Went Wrong?

We encountered challenges in predicting accurate models for a 
few targets. We provide two such examples: H0258 and H0227, 
which were caused by inappropriate sequence optimization and 
incorrect assignment of stoichiometry, respectively.

For target H0258, we correctly predicted its stoichiome-
try as A1B2. However, the sequence optimization revealed 
that residues 893–1014 in subunit A were disordered, a find-
ing further confirmed by low pLDDT scores in the monomer 
model (Figure  S2a). These residues were removed before 
constructing a complex model for the target. Unfortunately, 
they are crucial for interactions with subunits B and C, mak-
ing it impossible to build an accurate complex model; the max-
imum confidence score achieved was around 0.3. Recognizing 
this issue during Phase 1, we reintroduced the removed 
residues, resulting in a significantly more confident model 
(Figure  S2a). As noted in the official report [33], our model 
for H1258 significantly outperformed other groups in terms 
of interface quality, which was also analyzed in the previous 
section.

For target H0227, the stoichiometry was incorrectly predicted as 
A6B6, which led to an inaccurate model. An experimental struc-
ture exists for subunit B, which is a hexamer. This prior infor-
mation suggests that the stoichiometry should be “A?B6.” Due to 
symmetry considerations, we mistakenly predicted the stoichi-
ometry as A6B6, resulting in a model with a confidence score of 
approximately 0.45 (Figure S2b), without thoroughly exploring 
other combinations during Phase 0. With the release of the cor-
rect stoichiometry information in Phase 1, we re-predicted the 
complex structure, generating a new model with a higher confi-
dence score (~0.65, Figure S2c).

The examples discussed above highlight the necessity of ex-
ploring alternative sequences and stoichiometries, unless 
highly confident models have been achieved through default 
optimization. In addition to these examples, several other 
targets, such as antibody/nanobody-involved complexes (e.g., 
H1204 and H1232), present significant challenges. Combining 
physics-based sampling with deep learning methods, as 
demonstrated by Dr. Dima Kozakov's group, may enhance the 
modeling accuracy.

5   |   Results for RNA Structure Prediction

The Yang-Server predictions for RNA were primarily based on 
trRNA2 and RNAthreader. Yang-Server submitted models for 
31 of the 36 officially assessed RNA monomer targets. Overall, 
Yang-Server ranked 4th among the 64 participating groups and 
was the best server group, surpassing AF3-server (ranked 9th; 
Figure  6a). Note that the Yang-Server results for large RNAs 
(> 400 nucleotides) without templates included the AF3 pre-
dictions. For the remaining targets, Yang-Server maintained a 
consistent ranking, still outperforming AF3-server (Figure 6b), 
illustrating the robustness of our prediction strategy. The follow-
ing examples illustrate the effectiveness of Yang-Server in RNA 
structure prediction.

5.1   |   Secondary Structure Prior Knowledge

The target R1256 is an SL5 RNA from the 5′ proximal region 
of coronaviruses, which exhibits 30 alternative conformations. 
As shown in Figure 6c, even without SS information, trRNA2 
achieved competitive RMSDs with AF3 (~20 Å) for this target. 
The SS generated by the SS module in trRNA2 (denoted by trR-
NA-SS) closely resembled that extracted from the experimental 
3D structure (Figure S3a). Using this prior information as input, 
the final Yang-Server model is significantly more accurate 
than the best AF3-server model, achieving an RMSD of 7.5 Å. 
Furthermore, the Yang-Server model exhibited a much lower 
clashscore (2.0) than the AF3-server model (12.1). According to 
the Z-score ranking, the Yang-Server model for this target was 
the most accurate prediction across all groups (Figure S3b). This 
example highlights the ability of trRNA2 to generate accurate 
predictions by exploring SS prior information, a capability not 
readily available in AF3.

5.2   |   Template-Based Modeling

The target R1281 is a 2F RNA 6-helix bundle dimer, a mutated 
version of a solved RNA structure (PDB ID: 7PTK), which was a 
synthetic RNA target in CASP15. Despite the availability of tem-
plate information, the prediction of this large RNA remained 
challenging. No group achieved an RMSD below 17 Å. For this 
challenging target, we identified 3D templates and performed 
template-based modeling using the automated RNAthreader 
method (Figure 6d). This prediction was the best model in terms 
of diverse metrics, including RMSD, TM-score, and GDT-TS. In 
contrast, the AF3-server performed below average, with a Z-
score of zero (Figure S3c).

In addition, we observed that similar results could be ob-
tained by feeding the SS of the template into the trRNA2 model 
(Figure  6d). This example demonstrates the potential of com-
bining template information with deep learning-based methods 
like trRNA2 to improve RNA 3D structure prediction, which 
can be further investigated in depth in the future.

6   |   Conclusions

We have entered an exciting era of biomolecular structure predic-
tion. By utilizing state-of-the-art structure predictors, including 
AlphaFold2, AlphaFold3, trRosettaX2, and trRosettaRNA2, we 
explored the potential for generating accurate structural models 
through careful optimization of input information in CASP16.

For protein structure prediction, we enhanced the input se-
quences by removing intrinsically disordered regions—a sim-
ple yet effective approach that yielded accurate models for 
protein domains across most targets. However, only a small 
fraction (< 25%) of the protein multimers were predicted with 
high quality, indicating that predicting protein multimers re-
mains a significant challenge. In the future, it will be beneficial 
to explore various strategies to enhance the modeling process. 
This includes comprehensive model sampling using AFsample 
[34] and alternative MSA generation through structure-based 
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alignment in MULTICOM [35]. Another way is to develop an 
AlphaFold-independent system, using novel algorithms and 
physics-enhanced neural networks [32, 33].

In RNA structure prediction, trRosettaRNA2, with improved 
secondary structure inputs, successfully generated the most 
accurate models for several RNA targets in CASP16. While 

FIGURE 6    |    Results for the RNA structure prediction by Yang-Server. (a, b) Top 15 RNA structure prediction groups ranked by summed Z-score 
(> 0.0) on all 36 officially assessed targets and 23 targets with < 400 nucleotides or with available templates. Server groups are highlighted in red bold 
in the x-axis labels. (c, d) Two examples, R1256 and R1281, to illustrate the Yang-Server performance. The predicted and experimental structures are 
shown in green and gray cartoons, respectively.
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automated predictions are not yet as accurate as those of lead-
ing human experts Vfold [36, 37], deep learning holds great 
promise for advancing RNA structure prediction in the com-
ing years.
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