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Single-sequence protein structure 
prediction using supervised transformer 
protein language models
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Significant progress has been made in protein structure prediction in recent 
years. However, it remains challenging for AlphaFold2 and other deep 
learning-based methods to predict protein structure with single-sequence 
input. Here we introduce trRosettaX-Single, an automated algorithm for 
single-sequence protein structure prediction. It incorporates the sequence 
embedding from a supervised transformer protein language model into a 
multi-scale network enhanced by knowledge distillation to predict inter-
residue two-dimensional geometry, which is then used to reconstruct three-
dimensional structures via energy minimization. Benchmark tests show that 
trRosettaX-Single outperforms AlphaFold2 and RoseTTAFold on orphan 
proteins and works well on human-designed proteins (with an average 
template modeling score (TM-score) of 0.79). An experimental test shows 
that the full trRosettaX-Single pipeline is two times faster than AlphaFold2, 
using much fewer computing resources (<10%). On 2,000 designed proteins 
from network hallucination, trRosettaX-Single generates structure models 
with high confidence. As a demonstration, trRosettaX-Single is applied to 
missense mutation analysis. These data suggest that trRosettaX-Single may 
find potential applications in protein design and related studies.

AlphaFold21 and other protein structure prediction methods, such as 
RoseTTAFold2, trRosetta3 and trRosettaX4, make use of the co-evolution 
signal embedded in a pre-generated multiple sequence alignment 
(MSA). However, no MSA could be built for proteins that do not have any 
homologous sequences in the current sequence database. In practice, 
there do exist many proteins (for example, from viruses) with a limited 
number of homologous sequences. In our test, all methods perform 
poorly on orphan proteins that do not have any sequence homologs 
(Supplementary Fig. 1). Interestingly, all tested methods (AlphaFold2, 
RoseTTAFold and trRosettaX) show a similar level of accuracy for single-
sequence input. We conclude that it remains challenging to predict 
accurate structure with single-sequence information, even with state-
of-the-art methods. In addition, the accurate structure prediction in 
the absence of MSA may help tackle more essential biological problems 

such as protein design and mutagenesis. It is thus worthwhile develop-
ing single-sequence protein structure prediction methods.

Many protein language models5–10 have been developed in recent 
years, inspired by the development of new natural language process-
ing approaches, especially transformers11 and bidirectional encoder 
representations from transformers (BERT)12. These models are typi-
cally trained on a large sequence database in an unsupervised way by 
generating training objectives from the sequences alone. Subsequent 
small-scale supervised training for downstream tasks, for example, the 
prediction of secondary structure and inter-residue contact, shows 
that the pre-trained models are helpful for these structure-related 
tasks even if they are trained with sequence information only. These 
successes pave the way for developing accurate deep learning-based 
approach to single-sequence protein structure prediction.
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Orphan25 and Design55; Methods). None of the proteins in these data-
sets have sequence homologs in the sequence database used for train-
ing s-ESM-1b. The accuracy of the predicted inter-residue distance is 
measured by distance precision (equation (7)) proposed by ref. 16. The 
accuracy of the predicted structure models is measured by template 
modeling score (TMscore)17. Both metrics range from 0 to 1 and higher 
values indicate higher accuracy.

Performance on orphan proteins. We test all methods on 25 orphan 
proteins (that is, Orphan25) that do not have any homologous 
sequences in the used sequence database (refer to Methods for more 
details). Figure 1b shows that the average precision of the predicted 
distances on this dataset by trRosettaX-Single (0.31) is higher than 
AlphaFold2 (0.24), RoseTTAFold (0.23) and trRosettaX (0.15). With 
improved distance prediction, trRosettaX-Single generates more accu-
rate structure models than other methods: the average TM-scores  
(Fig. 1c) are 0.48, 0.42, 0.38 and 0.36 for trRosettaX-Single, AlphaFold2, 
RoseTTAFold and trRosettaX, respectively. trRosettaX-Single can pre-
dict the correct fold (that is, TM-score > 0.5) for more than half of these 
orphan proteins (13/25; Supplementary Fig. 3a). Figure 2a shows the 
results on a representative protein (Protein Data Bank (PDB) ID 7JJV). 
The distance maps predicted by AlphaFold2 and RoseTTAFold are 
blurred with low distance precisions (0.14 and 0.11, respectively). The 
predicted structure models also have low TM-scores, that is, 0.15 for 
AlphaFold2 and 0.16 for RoseTTAFold. In contrast, the distance map 
predicted by trRosettaX-Single is similar to the native distance map 
with a distance precision of 0.58; and the predicted structure model 
has a high TM-score of 0.60.

We further investigate whether AlphaFold2 could be improved 
or not by the inclusion of structural templates. In general, lacking 
homologous sequences usually implies lacking homologous structural 
templates. Searching against the PDB70 database with HHsearch18 
indicates that no homologous templates at e-value < 0.001 could 
be detected for all orphan proteins (templates released after each 
query protein were removed). When the top templates (regardless of 
e-value) are used, the template-based AlphaFold2 models do not have 
a significant difference with the template-free AlphaFold2 models 
for 23 orphan proteins (Supplementary Fig. 4a). The inclusion of top 
templates improves the AlphaFold2 models for one protein (PDB ID: 
6LF2; TM-score increases from 0.25 to 0.84; Supplementary Fig. 4b); 
but worsens the AlphaFold2 models for another protein (PDB ID: 7LOK; 
TM-score decreases from 0.43 to 0.15; Supplementary Fig. 4c). Thus the 
template-based AlphaFold2 is still less accurate than trRosettaX-Single 
(TM-score 0.44 versus 0.48), which does not use templates.

Performance on human-designed proteins. Human-designed pro-
teins are ideal candidates for benchmarking single-sequence folding as 
they typically lack homologous sequences in nature. Here we evaluate 
our method on 55 human-designed proteins. Figure 1b,c, and Supple-
mentary Fig. 3b show that all methods predict much more accurate 
inter-residue distances and structure models on these proteins. Figure 
1c shows that trRosettaX-Single achieves a mean TM-score of 0.79 on 
this dataset, substantially higher than that on the orphan proteins 
(0.48). This is consistent with our previous observation that trRosetta 
generates much more accurate structures for designed proteins than 
natural proteins3.

Our method is slightly worse than AlphaFold2 for human-designed 
proteins (TM-score 0.79 versus 0.84). The outstanding performance of 
AlphaFold2 in the absence of a coevolutionary signal might be because 
it captures the fundamental features of protein sequence–structure 
relationships. This is especially true for human-designed proteins that 
have been manually optimized with exceptional stability, as observed 
in the literature3,15,19. In addition, we find that the recycling mechanism 
in AlphaFold2 plays a key role in predicting accurate models for human-
designed proteins (Supplementary Fig. 5), which may shed light on the 

Compared with MSA-based protein structure prediction, only 
limited studies have been carried out for single-sequence protein 
structure prediction with deep learning. Single-sequence-based 
contact predictor (SSCpred)13 is a deep convolutional network for 
contact map prediction using sequence one-hot encoding and 23 
predicted one-dimensional (1D) structural features. It is improved 
by SPOT-Contact-LM14 by using a pre-trained language model ESM-1b 
(Evolutionary Scale Modeling-1b)5. Both SSCpred and SPOT-Contact-
LM predict the 2D contact map only. To our knowledge, recurrent 
geometric network-2 (RGN2) is the first reported deep learning-based 
single-sequence method for 3D structure prediction15. RGN2 makes use 
of a transformer protein language model to learn structural informa-
tion and uses a geometric module to generate the backbone structure. 
However, neither a web server nor a standalone package is available for 
RGN2 at the time of this work.

In this Article, we introduce trRosettaX-Single, a deep learning-
based single-sequence protein structure prediction method with a 
supervised transformer protein language model. Benchmark tests 
show that our method outperforms AlphaFold2 and RoseTTAFold on 
orphan proteins. On human-designed proteins, trRosettaX-Single is 
competitive with AlphaFold2 and outperforms RoseTTAFold. trRoset-
taX-Single also generates much more accurate contact prediction than 
SPOT-Contact-LM on all independent test sets. Finally, as a demonstra-
tion, trRosettaX-Single is applied to protein design/hallucination and 
missense mutation analysis.

Results
Overview of trRosettaX-Single
The full pipeline of trRosettaX-Single can be divided into two steps: 2D 
geometry prediction and 3D structure folding (Fig. 1a). The only input 
to trRosettaX-Single is the amino acid sequence of a target protein. The 
sequence is fed into a transformer protein language model s-ESM-1b 
(supervised ESM-1b) to obtain single representation and attention maps 
(pair representations). Together with one-hot encoding, the protein 
sequence is represented as an L × L × 4,756 tensor (L is the length of the 
sequence). This tensor is the input to a multi-scale network (denoted 
by Res2Net_Single; Methods and Supplementary Fig. 2) used in trRo-
settaX. The network outputs the predicted 2D geometry, including 
inter-residue distance and orientations defined in trRosetta3, which 
is then converted into spatial constraints to guide structure folding 
based on fast energy minimization.

The novelty of trRosettaX-Single compared with other methods 
is summarized in four aspects.

	(1)	 trRosettaX-Single uses an enhanced protein language model 
(s-ESM-1b) by supervised learning with structural information, 
whereas RGN2 uses an unsupervised model AminoBERT; and 
SPOT-Contact-LM uses a fixed model ESM-1b.

	(2)	trRosettaX-Single focuses on improving single-sequence struc-
ture prediction with s-ESM-1b, whereas trRosettaX, AlphaFold2 
and RoseTTAFold are for MSA-based structure prediction.

	(3)	trRosettaX-Single separates 2D prediction and 3D folding, 
whereas RGN2 and AlphaFold2 are end-to-end. The advantage 
of such a two-step approach is especially obvious in the applica-
tion of protein design: speeding up sequence design substan-
tially by using the first step only.

	(4)	trRosettaX-Single is armed with a series of new training strate-
gies, including a multi-scale residual network, sequence mask 
prediction and knowledge distillation from an MSA-based 
predictor.

Comparison with MSA-based methods
We compare trRosettaX-Single with three MSA-based methods, that 
is, AlphaFold2, RoseTTAFold and trRosettaX (see Methods for details). 
The comparison is based on the accuracy of predicted inter-residue 
distances and structure models on two benchmark datasets (that is, 
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future development of our method. Nevertheless, trRosettaX-Single 
is faster and uses much less computing resources than AlphaFold2. 
Supplementary Fig. 6 suggests that trRosettaX-Single is about two 
times faster than AlphaFold2, using less than 10% computing resource.

trRosettaX-Single outperforms RoseTTAFold and trRosettaX on 
the human-designed proteins, and is competitive with AlphaFold2.  
Figure 1c and Supplementary Fig. 3b show that trRosettaX-Single 
achieves an average TM-score of 0.79 and generates correct fold for 
52 out of the 55 human-designed proteins, higher than RoseTTAFold 
(0.75, 51) and trRosettaX (0.69, 49). Figure 2b shows the results on 
a human-designed protein (PDB ID: 2LSE). The distance maps pre-
dicted by AlphaFold2 and RoseTTAFold miss the interactions between 
the loop at the C-terminal (residues 84–101) and one of the helices 
(residues 47–64), resulting in the large distance between them in 
the predicted structure models. In contrast, trRosettaX-Single cor-
rectly captures these interactions and generates a more accurate 
model with a TM-score (0.85) higher than AlphaFold2 (0.77) and  
RoseTTAFold (0.53).

Comparison with single-sequence methods
As mentioned above, a few methods trained with a single sequence have 
been reported in the literature, including SSCpred13, RGN215 and SPOT-
Contact-LM14. As SPOT-Contact-LM has been shown to outperform 
SSCpred, the latter is excluded in our comparison. The comparison 
with SPOT-Contact-LM is based on contact precision because it predicts 

inter-residue contacts (that is, distance ≤8 Å) rather than 3D struc-
ture. The contact precision is defined as the proportion of correctly 
predicted contacts in the predicted top-L long- and medium-range 
contacts (that is, with distance ≤8 Å and sequence separation ≥12).

Figure 3a,b suggests that trRosettaX-Single consistently outper-
forms SPOT-Contact-LM for all benchmark datasets, and for most 
proteins of the two datasets, trRosettaX-Single achieves more accu-
rate contact predictions than SPOT-Contact-LM. For example, the 
average precisions of trRosettaX-Single and SPOT-Contact-LM on the 
55 human-designed proteins are 0.77 and 0.59, respectively. For 48 
out of these proteins, trRosettaX-Single has a higher precision than 
SPOT-Contact-LM.

As both methods use protein language models derived from ESM-
1b to encode the single sequence, we further analyze their depend-
encies on ESM-1b. As shown in Fig. 3c, 57% of the contacts correctly 
predicted by SPOT-Contact-LM are directly inherited from ESM-1b. 
This ratio drops to 41% for trRosettaX-Single, which means more than 
half of the correctly predicted contacts are independently detected by 
trRosettaX-Single. The improved performance and the lower depend-
ency on ESM-1b of trRosettaX-Single over SPOT-Contact-LM may be 
attributed to the more powerful multi-scale network Res2Net (com-
pared with ResNet in SPOT-Contact-LM) and a few key factors, such as 
the supervised training of the pre-trained ESM-1b, knowledge distilla-
tion and so on. More detailed discussions about these factors are given 
in the ‘Ablation study’ section.
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Fig. 1 | The architecture and performance of trRosettaX-Single. a, Overview 
of trRosettaX-Single. s-ESM-1b is a supervised transformer protein language 
model with initial parameters from ESM-1b. s-ESM-1b generates the single 
representation and the attention maps from a single sequence. The single 
representation along with the one-hot encoding of the amino acid types is 
converted into 2D feature maps via outer product operation. These 2D feature 
maps are merged with the attention maps and then fed into Res2Net_Single, a 
knowledge-distilled multi-scale neural network, to predict the inter-residue 
geometry. Finally, a 3D structure model is generated from the predicted 2D 

geometry via energy minimization. b, Comparison with MSA-based methods  
in terms of the precision of predicted inter-residue distances. c, Comparison  
with MSA-based methods in terms of the average TM-score of the predicted 
structure models. The boxplots in b and c were drawn using n = 80 proteins  
(25 for Orphan25 and 55 for Design55). The center, lower and upper lines in each 
box indicate the median, the first quartile and the third quartile, respectively. 
The white hole inside each box refers to the mean value. The whiskers show the 
2.5% and 97.5% quantiles and the points outside the whiskers are outliers. All 
predictions are made without any structural homologs.
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Fig. 2 | Comparison between trRosettaX-Single, AlphaFold2 and 
RoseTTAFold on two example proteins. a., Comparison with AlphaFold2 and 
RoseTTAFold on an orphan protein without any homologous sequence (PDB ID: 
7JJV). b, Comparison with AlphaFold2 and RoseTTAFold on a de novo-designed 
four-helix bundle protein (PDB ID: 2LSE). In both panels, we present the distance 
maps and 3D structures predicted by different methods. Each point in a distance 

map corresponds to a pair of residues with distance indicated by the color bar. 
The darker the color, the closer the residues are. Each distance map is divided 
into two triangles by the black diagonal line. The points in the lower and upper 
triangles are the native and predicted distances, respectively. The predicted 
structure models and experimental structures are shown in blue and gray 
cartoons, respectively.
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RGN2 is another single-sequence method utilizing a language 
model (named AminoBERT) pre-trained on a large sequence database 
to encode protein sequence, followed by a Bi-directional Long Short-
Term Memory (Bi-LSTM)20 network to predict bond and torsion angles, 
which are then used to generate the protein backbone. However, similar 
to SPOT-Contact-LM, the parameters in the AminoBERT module were 
frozen after the unsupervised training on sequences. This means that 
AminoBERT was not optimized under the direct supervision of the 
structural information. At the time of this work, as neither source 
codes nor detailed data are available for RGN2, we can only give some 
indirect comparisons with it, that is, the relative improvement over 
RoseTTAFold and AlphaFold2 are compared. We follow RGN2 and use 
GDT-TS (Global Distance Test - Total Score)21 and distance-based root-
mean-squared deviation (dRMSD) as metrics. trRosettaX-Single out-
performs AlphaFold2 and RoseTTAFold on both metrics in 20% and 42% 
of the human-designed proteins, respectively. According to the RGN2 
paper, the corresponding ratios for RGN2 are 17% and 26%, respec-
tively15. This indicates that our method is potentially more accurate  
than RGN2.

Application to hallucinated proteins
We further test our method on the 2,000 hallucinated proteins, 
which were de novo-designed by deep network hallucination22. As 
the experimental structures for most of these proteins are unknown, 
we estimate the TM-score of the predicted models (see ‘Confidence 
score of predicted structure models’ section). The average of the 
estimated TM-scores of the predicted structure models for these 
proteins is 0.86. For all proteins, the predicted models are esti-
mated to have the correct fold (Fig. 4a). On three proteins (0217, 
0515 and 0738) that have been determined by X-ray diffraction or 
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nuclear magnetic resonance experiments, trRosettaX-Single gener-
ates structure models with similar accuracy (that is, TM-score and 
RMSD) to the hallucinated ones (Fig. 4b). These data illustrate again 
the potential application of trRosettaX-Single in protein design. The 
high accuracy achieved on designed/hallucinated proteins implies 
the possibility of developing similar hallucination methods based on  
trRosettaX-Single.

Application to missense mutation analysis
Accurate single-sequence structure prediction makes it possible to 
analyze the mutation effect directly due to its independence from MSA. 
As a proof of concept, an exhaustive scanning of single-site mutations 
was performed on the wild-type sequences of the 55 human-designed 
proteins. Then we predict the inter-residue distance map for each 
mutated sequence. To estimate the tolerance to mutation, we calcu-
late the negative logarithmic change of mP20 (an estimation of the 
distance prediction accuracy, see equation (8)):

Δmp = −logmP20mutatedmP20WT
(1)

where mP20mutated and mP20WT refer to the mP20 value of the distance 
maps predicted from the mutated and wild-type sequences, respectively.

A high Δmp implies a large decrease in structure stability after 
mutation. For each of the human-designed proteins, we predicted the 
3D structures for the mutations with the highest Δmp value. Figure 5a  

shows that the predicted structures for 48 mutations have a lower 
TM-score than the wild-type sequences. Most of these mutations are 
located at the interfaces or the linkers between secondary structure 
units, resulting in the breaks or shifts of the secondary structures (Sup-
plementary Fig. 7). We also find several mutations that break the overall 
folds (Fig. 5b), in which the TM-score drops from >0.7 to ~0.3. These data 
reflect the possibility of applying our method to predict the effects of 
missense mutations. However, these data need to be interpreted with 
caution as we do not have experimental evidence for these mutations.

To further investigate the effect of mutations on the protein func-
tions, we use three deep mutational scanning datasets collected by ref. 23.  
These three datasets were derived from three proteins of different 
functions (Supplementary Table 3), that is, Aequorea Victoria green-
fluorescent protein (avGFP)24, poly(A)-binding protein (Pab1)25 and 
ubiquitination factor E4B (Ube4b)26. Each dataset contains tens of 
thousands of mutations with precomputed functional scores, allowing 
us to analyze the relationships between the Δmp metric and protein 
functions. Figure 5c shows the distributions of the functional scores 
at different levels of Δmp. Overall, the functional scores drop with 
the increase of Δmp, illustrating that trRosettaX-Single can roughly 
capture the mutant effect on protein functions. Nevertheless, these 
correlations are not strong enough (Spearman correlation coeffi-
cients are 0.14–0.4). A more precise prediction of the mutation–func-
tion relationship may need more elaborate efforts in the future, for 
example, by developing a supervised-training method with the help 
of trRosettaX-Single.
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(gray) for two examples. The TM-scores are listed in the format of wild-type/
mutation. c, Relationships between the functional scores and Δmp values on 
three deep mutational scanning datasets (n = 52,024, n = 40,852 and n = 98,297 
mutations, respectively). The violin plots show the distribution of the functional 
scores at different Δmp levels. The width of each violin plot represents the 
relative frequency of data points in each region. The red dots are the mean values. 
Each error bar indicates the mean ± standard deviation.
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Application to protein–protein complex structure prediction
Previous studies have suggested that the MSA-based models trained 
on monomers can be used to predict the structures of protein–protein 
complexes2,27–29. To investigate whether this still holds in the absence 
of MSA, we test our method on the 32 heterodimers used in previ-
ous studies27,30 (see Methods for details). TM-score and DockQ (a 
metric to measure the accuracy of predicted protein-protein com-
plex models)31 are used jointly to measure the quality of the pre-
dicted structures. The TM-score is calculated by connecting both 
chains. As shown in Supplementary Fig. 8, trRosettaX-Single can 
correctly fold 5 out of the 32 structures in terms of TM-score. How-
ever, none of the interfaces for all dimers are predicted correctly 
(DockQ < 0.23). AlphaFold2 and RoseTTAFold also fail to predict 
the interface with single-sequence input (the purple and brown 
dots in Supplementary Fig. 9, respectively). These data suggest that 
accurate prediction of protein–protein complex structure with the 
input of single sequence is much more challenging than for monomer  
structure.

Ablation study
With supervised learning, we re-trained the language model ESM-1b 
from its initial parameters. The new model (s-ESM-1b) was then used to 
generate extra features from single sequence. In addition, a few train-
ing strategies were explored to make full use of the limited sequence 
information (Methods). To analyze their contributions, we train and 
evaluate six ablation models below (the datasets used by each model 

are indicated in parentheses). More details about these models are 
available in Supplementary Table 4.

	(1)	 Baseline model using sequence one-hot encoding only 
(Single15051)

	(2)	Baseline + ESM-1b (Single15051)
	(3)	Baseline + ESM-1b + knowledge distillation (MSA15051 + 

Single15051)
	(4)	Baseline + s-ESM-1b (Single15051)
	(5)	Baseline + ESM-1b + extended training set (Cluster22503)
	(6)	Final model with all components listed above (MSA15051 + Sin-

gle15051 + Cluster22503)
The above ablation models are used to predict the inter-residue 

distances. trRosettaX is used as a control here as it adopts a similar 
neural network architecture. To save time, no ensemble is applied and 
no structure modeling step is performed in this analysis. The differ-
ences between the precisions of the predicted distances by the ablation 
models and trRosettaX are summarized in Fig. 6a.

When the pre-trained language model is not used, the baseline 
model has a similar precision to trRosettaX on orphan proteins. Inter-
estingly the baseline model is worse than trRosettaX and another 
model trained with sequence profile (Res2Net_Profile) on human-
designed proteins (Supplementary Fig. 10). Note that both trRosettaX 
and Res2Net_Profile are trained with MSA while the baseline model 
is trained with single sequence. This may suggest that MSA-trained 
models can capture the fundamental features of protein sequence–
structure relationships for human-designed proteins3,15,19. With the 
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Fig. 6 | Ablation study and estimation of model accuracy. a, Distance precision 
difference between trRosettaX and other ablation models (n = 25 and n = 55 
proteins for Orphan25 and Design55, respectively). b, Correlation between the 

real and the estimated TM-scores. The formula for estimating the TM-score is 
given at the bottom of the figure. c, Head-to-head comparison between s-ESM-1b 
and ESM-1b based on the precision of the predicted contacts by both methods.

http://www.nature.com/natcomputsci


Nature Computational Science | Volume 2 | December 2022 | 804–814 811

Article https://doi.org/10.1038/s43588-022-00373-3

introduction of the ESM-1b features, that is, in model (2), the predicted 
distances become more accurate than trRosettaX and the baseline 
model for both datasets. This indicates that the protein language model 
does bring more enriched representation than the one-hot encoding. 
The knowledge distillation further improves the predicted distance, 
though not very notable (~0.8% for human-designed proteins and 
~0.2% for orphan proteins, model (2) versus model (3) in Fig. 6a). This 
might be because the distillation is based on proteins with MSA. Note 
that the knowledge distillation is to learn from soft labels generated 
by MSA-based models, aiming to achieve the accuracy of MSA-based 
predictions.

With supervised training in s-ESM-1b, we can make consistent 
improvements (model (2) versus model (4) in Fig. 6a). This illustrates 
the importance of supervised training of a protein language model with 
structure information. In addition, the extended training set introduces 
the proteins with few or without any homologous sequences, resulting 
in further improvements. The most accurate model is obtained by con-
sidering all components in the final model, which has 0.153 and 0.189 
higher distance precision than trRosettaX on the datasets Orphan25 
and Design55, respectively.

To give a direct comparison between s-ESM-1b (used in our 
method) and the unsupervised ESM-1b, we trained two logistic regres-
sion models to transform their attention maps into predicted contact 
maps (Methods). As shown in Fig. Fig. 6c and 6d, s-ESM-1b outperforms 
ESM-1b on both test sets. The improved contact prediction proves 
the advantage of applying supervised learning to optimize protein 
language models.

Confidence score of predicted structure models
In trRosetta and trRosettaX3,32, the TM-scores of the predicted struc-
ture models have been estimated reliably. Here we extend this estima-
tion in trRosettaX-Single. A linear regression model was used to fit 
the TM-scores using several variables reflecting the confidence of the 
predicted distance and the convergence of the top structure models 
(Methods). For the proteins from the two benchmark datasets, the 
estimated TM-score correlates very well with the real TM-score of the 
predicted models (Pearson’s r is 0.91; Fig. 6b).

Discussion
The main obstacle to single-sequence structure prediction is the 
quite limited information implied in a sequence compared with 
an MSA. From this point of view, the good performance of trRoset-
taX-Single is primarily due to the efforts to extract as much infor-
mation as possible from a single sequence. For example, using a 
pre-trained protein language model to embed the input sequence 
can provide extra knowledge implied in the tens of millions of 
unlabeled sequences used for training the language model. The 
MSA-based knowledge distillation can encourage the network to 
simulate the sequence homologs information (though it may not 
exist in the current databases) from the single sequence during infer-
ence. The supervised optimization of the protein language model 
can make the sequence embeddings more specific to structure  
prediction.

However, we admit that the accuracy of single-sequence structure 
prediction for orphan proteins is still far from satisfactory. In addition, 
further benchmark tests suggest that single-sequence prediction of the 
protein–protein complex structure is more challenging than monomer 
structure. This may be due to the lack of interchain coevolutionary 
signals that can be extracted from MSAs by elaborate pairing strate-
gies or neural networks. Addressing these issues may require more 
advanced network architecture (for example, end-to-end prediction 
from sequence to 3D structure) and some experimental information 
(for example, from cryogenic electron microscopy data). We hope to 
move the single-sequence accuracy towards the MSA-based level in 
the future.

Methods
Datasets
Two datasets are used to train our network. The first is a high-quality 
dataset from our previous studies3,4, including 15,051 non-redundant 
(<30% pair-wise sequence identity) chains from PDB released before 
May 2018. The structures in this dataset are from high-resolution 
(≤2.5 Å) X-ray entries and each chain’s MSA has at least 100 homolo-
gous sequences. Knowledge distillation is done with the MSAs in this 
dataset, which was generated from a few databases with a release 
date before the date of Uniclust30_2018. For convenience, we denote 
this dataset by MSA15051 or Single15051, respectively, depending 
on whether MSAs or single sequences are used during training. The 
second set is an extended version of the first one by relaxing the cri-
teria (that is, no requirements of structure determination methods 
and homologous sequences). It contains 330,080 protein chains 
released before May 2018, which are then clustered using CD-HIT 
(Cluster Database at High Identity with Tolerance; version 4.8.1)33 at 
30% sequence identity cut-off, resulting in 22,503 clusters. For conveni-
ence, this dataset is denoted by Cluster22503. At each training epoch, 
we cycle through all clusters and randomly select a protein chain from  
each cluster.

Two independent test datasets are constructed to compare our 
method with others.

	(1)	 Orphan proteins (Orphan25). We first collected all natural 
protein structures from PDB that were released after May 2020 
(that is, the start date of CASP14). These proteins were then 
searched against the sequence database UniRef50_2018_03 
(used in ESM-1b) with MMseqs234 search at an e-value cut-off of 
0.05. A protein is regarded as an orphan protein if no sequence 
homologs is returned. Finally, a total of 25 non-redundant 
orphan proteins were obtained.

	(2)	 Human-designed proteins (Design55). From PDB, we first 
collect all single-chain structures with keywords ‘de novo 
designed’ or ‘computational designed’ in the structure titles. 
Structures with <50 or >300 amino acids or with too simple 
topologies (for example, a single α-helix) are removed. Then 
structures with sequence homologs in UniRef50_2018_03 were 
removed (according to MMseqs2). The remaining proteins are 
then merged with the 35 human-designed proteins from previ-
ous studies3,19. The proteins that have hits in our training sets at 
an e-value cut-off of 0.1 (using PSI-BLAST35) are removed, result-
ing in 55 human-designed proteins. Details about the above 
datasets are summarized in Supplementary Table 5. The above 
datasets, together with the package source codes are available 
at https://yanglab.nankai.edu.cn/trRosetta/benchmark_single/.

Network architecture
As shown in Supplementary Fig. 2, trRosettaX-Single’s network 
(denoted by Res2Net_Single) contains two groups of Res2Net blocks, 
which output 128 and 256 feature maps, respectively. Compared with 
ResNet, Res2Net achieves various receptive fields (that is, multiple 
scales) within a single block by applying multiple operations on the 
grouped channels36. After the last Res2Net block, four classifiers con-
sisting of a 1 × 1 convolutional layer and a softmax operation are used 
to predict the probability distributions of the inter-residue geometries 
(Cβ–Cβ distance and three orientations, defined in trRosetta3).

Folding by energy minimization
The structure folding based on energy minimization is the same as 
that employed in trRosetta and trRosettaX. In short, the predicted 2D 
geometries are first converted into energy potentials. Quasi-Newton-
based optimization is then applied to minimize the free energy to 
generate 120 coarse-grained centroid models, which is implemented 
under the framework of Rosetta (PyRosetta437). Finally, the top-five 
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centroid models are relaxed to generate full-atom structure models. 
For more details, please refer to the work of trRosetta3.

Experiment set-up
We compare trRosettaX-Single with representative MSA-based meth-
ods, including AlphaFold2, RoseTTAFold and trRosettaX. All meth-
ods are installed and run locally without any sequence or structural 
homologs. For AlphaFold2, we run all five models and select the top 
one based on the predicted local distance difference test score (pLDDT, 
a confidence score). The predicted distances are extracted from the 
output of the distogram head of this top model. For RoseTTAFold, we 
only assess its pyRosetta version, which was more accurate than its 
e2e version in our test. The 3D structures are presented using PyMOL.

Prediction of protein–protein complex structure
We use the 32 heterodimers used to benchmark GremlinComplex30 to 
test our method. For the 2D geometry prediction, we concatenate the 
two sequences and modify the residue indices in s-ESM-1b by insert-
ing a chain break with 200 residues between the sequences. The 3D 
structures are predicted using the fold-and-dock protocol29 with the 
predicted inter-residue geometry by trRosettaX-Single.

Supervised transformer protein language model s-ESM-1b
The features extracted from a unsupervised pre-trained protein lan-
guage model (that is, ESM-1b5) show strong correlations with some 
structural characteristics, such as secondary structure, inter-residue 
contact and ligand-binding site. We propose that the correlation can 
be further enhanced by supervised training of ESM-1b on specific tasks 
starting from the pre-trained parameters.

In this study, we re-train the ESM-1b parameters based on super-
vised learning, resulting in a new model s-ESM-1b (Supplementary Fig. 
11). As shown in Supplementary Fig. 11, we optimize ESM-1b on two 
objectives. The first is to predict the amino acid types of the randomly 
masked positions (with 15% rate), supervised by the cross-entropy loss 
(Lmask) between the predicted probability distributions and the one-hot 
encoding of real types, which can be written as

Lmask = − 1
Nres

Nres
∑
i=1

20
∑
j=1
I (j,ai) logpi,j (2)

where Nres is the count of residues in the sequence, ai represents one 
of the 20 amino acids, pi,j is the predicted probability for the jth amino 
acid type at the ith position, and I() is an indicator function.

The second is to predict the inter-residue geometry. The attention 
maps and the 1D representation of the masked sequence are fed into the 
network Res2Net_Single together with the one-hot encoding of the pre-
dicted sequence to predict the inter-residue geometry, supervised by 
its cross-entropy loss with the native (Lgeometry), which can be written as

Lgeometry = − 1
4N2res

Nres
∑
i=1

Nres
∑
j=1

∑
t∈{d,θ,ω,φ}

K(t)
∑
k=1

Iij (t, k) logpsingleij (t, k) (3)

where t refers to one of the four inter-residue geometries defined in 
trRosetta3 (that is, the Cβ-Cβ distance d, two dihedral angles θ, ω, and 
one planar angle φ), K(t) is the number of bins for the geometry t (that 
is, 37 for distance, 25 for dihedral angles and 13 for planar angle), I() is 
an indicator function, and psingleij (t, k) is the kth bin’s probability (pre-
dicted by Res2Net_Single) for the geometry t between residues i and j.

The parameters in Res2Net_Single are also updated in this process. 
The total loss is Lmask + Lgeometry with equal weights.

Input features
As shown in Fig. 1a, the input to the network includes 1D and 2D features. 
The 1D features include the one-hot encoding of each residue’s amino 
acid type (20 channels) and the sequence representation vector (1,280 

channels) from s-ESM-1b. A linear layer with 1 × 1 convolution is first 
used to reduce the number of 1D channels from 1,300 (= 20 + 1,280) to 
64. They are then converted to 4,096 (= 642) 2D feature maps with outer 
product operation. In addition, we extract the attention maps from all 
33 layers (20 heads per layer) of s-ESM-1b, resulting in 33 × 20 = 660 
attention maps. To summarize, the input to Res2Net blocks consists 
of 4,756 (= 4,096 + 660) 2D feature maps.

Knowledge distillation guided by MSA-based network
Knowledge distillation38 is a training technique to transfer the knowl-
edge from a confident pre-trained network (also named as teacher 
network) into a pre-mature network (also named as student network), 
which has been shown to be helpful for the performance of student 
network. The student network is trained under the supervision of the 
soft labels generated by the teacher network. In this study, to bridge 
the accuracy gap between the single-sequence and MSA-based predic-
tions, the knowledge from a pre-trained MSA-based network (that is, 
the teacher network, denoted by Res2Net_MSA) is distilled to Res2Net_
Single (that is, the student network). During training, the MSA of a 
training protein is fed into the Res2Net_MSA to produce a probability 
distribution. The Kullback–Leibler divergence between this probability 
distribution and the one from the student network Res2Net_Single (that 
is, Ldistill) is calculated as

Ldistill =
1

4N2res

Nres
∑
i=1

Nres
∑
j=1

∑
t∈{d,θ,ω,φ}

pMSAij (t, k) log
pMSAij (t, k)

psingleij (t, k)
(4)

where pMSAij (t, k) has a similar meaning to psingleij (t, k) in equation (3) but 
with prediction by the network Res2Net_MSA. This step of training is 
supervised by Lgeometry + Ldistill. The training sets MSA15051 and Sin-
gle15051 are used as MSAs are needed for the teacher network.

Training of the final models
The training procedure for building the final model consists of two 
stages. First, we train a Res2Net_MSA-guided model Res2Net_Single 
with the dataset MSA15051 (that is, knowledge distillation). The loss 
function used at this stage is the summation of Lgeometry (equation (3)) 
and Ldistill (equation (4)) that is

L1 = Lgeometry + Ldistill (5)

Second, the Res2Net_Single parameters are further refined based 
on supervised training of ESM-1b (that is, s-ESM-1b) with the dataset 
Cluster22503. The loss function used at this stage is the summation of 
Lgeometry (equation (3)) and Lmask (equation (2)), that is

L2 = Lgeometry + Lmask (6)

A total of six models are trained with the same configurations 
(Supplementary Table 6). The final prediction is based on the ensemble 
of these models.

Logistic regression
To give a direct comparison between ESM-1b and s-ESM-1b, their atten-
tion maps were converted into predicted contact maps, following a 
similar procedure mentioned before10. The logistic regression coef-
ficients were optimized on 100 proteins that were randomly selected 
from the dataset Single15051. Adam optimizer was used with an initial 
learning rate of 0.005 and 10 epochs were performed. The loss function 
is the binary cross-entropy loss.

Distance precision
The residue pairs are first ranked by the predicted probability of 
inter-residue distance ≤20 Å. Then we define S as the set of the top-15L 
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residue pairs with sequence separation ≥12, where L is the length of 
the sequence. The distance precision is then defined as the ratio of 
correctly predicted residue pairs (that is, the difference between the 
predicted and the real distances is less than 2 Å) over S, which can be 
written as:

DP = 1
|S| ∑

(i,j)∈S
P (dij ≤ 20) I (||Dij − dij|| ≤ 2) (7)

where dij and Dij are the predicted and native distances between residues 
i and j, respectively, and |S| is the size of set S. Note that dij is calculated 
as a weighted average of the predicted distribution, using probabilities 
of nine bins defined in the Critical Assessment of Structure Prediction 
(CASP) experiment (that is, (0, 4 Å], (4, 6 Å], (6, 8 Å], ..., (18, 20 Å]).

Estimation of model accuracy
To estimate the quality of the predicted model, a few variables are first 
derived from predicted distance maps and generated decoys:

	(1)	 mP2016: the average probability of the predicted distances for 
the set S (defined in ‘Distance precision’ section). The set S is 
split into nine subsets according to the distance bins defined 
in the CASP14 experiment (that is, (0, 4 Å], (4, 6 Å], (6, 8 Å], ..., 
(18, 20 Å]). Each subset (denoted by Mk) is a collection of residue 
pairs for which the predicted probability of the kth distance bin 
is the highest. Then mP20 can be written as:

mP20 = 1
9

9
∑
k=1

1
|Mk|

∑
(i,j)∈Mk

pij(k) (8)

where pij(k) is the predicted probability of the kth bin for the residue 
pair (i, j).
	(2)	 s.d.: the average standard deviations of the distance probability 

values for all residue pairs.
	(3)	 pTM: the average pair-wise TM-score of the top ten decoys with 

the lowest total energies.

The TM-score is estimated based on linear regression over 
the above variables using 1,000 randomly selected proteins from 
Cluster22503:

eTM = 0.6498 ×mP20 + 0.4451 × pTM + 0.2764 × s.d. − 0.0429 (9)

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data supporting the findings and conclusions of this study are 
available in this paper and its Supplementary Information. All of the 
training and test data used in this work are available at Zenodo39 and 
our website (https://yanglab.nankai.edu.cn/trRosetta/benchmark_
single/). The experimental 3D structures can be downloaded from 
PDB (https://www.rcsb.org/). The Orphan25 dataset includes 25 natu-
ral proteins that were published after May 2020 and have no sequence 
homologs in UniRef50_2018_03 with MMseqs2 search at an e-value 
cut-off of 0.05. The Design55 dataset includes 55 human-designed 
proteins that have no sequence homologs in UniRef50_2018_03. 
The designed proteins are of size between 50 and 300 amino acids. 
We removed proteins that are in simple topologies (for example, a 
single alpha helix) or have hits in the training sets at an e-value cut-off 
of 0.1 by PSI-BLAST. Source data for Figs. 1b,c and 2–6 are provided 
with this paper.

Code availability
The source code is available at Zenodo39 and our website (https://
yanglab.nankai.edu.cn/trRosetta/benchmark_single/).
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