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RNAs act as crucial ‘social’ mediators within the cell, orchestrating a wide
array of biological processes. Their functionality hinges on their complex
three-dimensional structures, which dictate stability, binding specificity and

molecular interactions. Inrecent years, a surge of research has focused on
solving and/or predicting RNA structures to unlock their functional secrets.
However, the dynamic nature and unique physicochemical properties of
RNAs pose notable challenges to accurate structural determination. This
Perspective reviews recent breakthroughs in RNA structure determination,
driven by innovative experimental techniques, such as cryo-electron
microscopy, alongside artificial intelligence-based tools inspired by
advancesin protein structure prediction. We explore how integrative
approaches that combine experimental and computational methods

are proving particularly powerful in illuminating the RNA world, offering
enhanced resolution and scalability. We discuss remaining challenges and
opportunities to overcome these hurdles. By integrating experiments

with computation, the field is poised to deepen our understanding of RNA
biology, paving the way for transformative applications in biotechnology

and medicine.

RNA, historically regarded merely as amessenger for geneticinforma-
tion, is now recognized as a pivotal molecule inthe origin of life, as pro-
posed by the RNA World Hypothesis'. Like proteins, many RNAs, such as
tRNA and rRNA, canfoldinto specific three-dimensional (3D) structures
to performdiverse functions?. Through intricate base-pairing interac-
tions, including both the canonical Watson-Crick base pairsand arich
vocabulary of noncanonical pairings, RNA forms complex secondary
structures like stems, loops and bulges. These elements then twist
and pack together in 3D space, forming tertiary structures that allow
RNA tobind with other molecules, catalyze biochemical reactions and
regulate cellular processes.

Since the first tRNA computational model (1969)° and crystal
structure (1974)* were published, the number of experimental RNA
structures has grown almost exponentially in the Protein Data Bank
(PDB’; Fig. 1a). Despite this impressive growth, a substantial data gap
persists between RNA-containing entries (8,000 intotal, with~2,000

being protein free) and protein structures (>200,000). Furthermore,
the existing RNA structure dataare heavily biased toward certain types
(for example, tRNAs and rRNAs). After removing redundancy and
structures with fewer than ten nucleotides, the number of unique RNA
structures reduces from -8,000 to ~800 (Fig. 1b).

Why RNA structureis hard to solve

RNA differs from protein in several properties that present consider-
able challenges to its structure determination®. First, RNA is highly
flexible, adopting a vast ensemble of conformations to conduct
various biological functions. This flexibility hinders the enhance-
ment of resolution through averaging techniques in high-resolution
experiments like X-ray crystallography and cryo-electron microscopy
(cryo-EM). Second, its negatively charged backbone needs a precise
ionic environment for stable folding, a condition that is difficult to
replicate experimentally or model computationally. Third, beyond the
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Fig.1| Growth of RNA structural data and examples for recent cryo-EM
advancements. a, A timeline plotting the exponential growth of RNA-
containing entries in PDB (data as of July 2025), annotated with key milestones
in experimental (yellow), computational (red) and integrated approaches
(hybrid)?>*#5473158.76789192104-106 BEDg, direct electron detectors. b, Statistics
for RNA typesin PDB (data as of July 2025). The nonredundant entries are
derived by removing sequences with over 80% identity using the CD-HIT-EST
program'®, which by default excludes short fragments (ten or fewer nucleotides)
forimproved cluster stability. c-f, Examples of recent advancements in RNA
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structure determination by cryo-EM, including the structure of asmall TPP
riboswitch (PDB 9C6K; green) determined using an RNA scaffold (PDB 9C6);
red) strategy" (c; note that the different PDB IDs are a result of masked local
refinement, a process where the scaffold and target RNA were computationally
isolated and refined individually); the Tetrahymena ribozyme (gray) shown with
itsordered (deep blue) and diffuse (light blue) water molecules (PDB 9CBU and
9CBX; d)"; the structure of the GOLLD RNA 14-mer nanocage (PDB 9MEE)", with
itsinner circle highlighted (e) and three resolved conformations of a viral stem-
loop 5(SL5) RNA (PDB 8UYE, 8UYG and 8UYJ; f)*.
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canonical Watson-Crick base pairs (A*U, G+C), RNA uses a variety of
noncanonicalinteractions (for example, Hoogsteen pairs and wobble
pairs) and tertiary motifs (for example, pseudoknots, G-quadruplexes
andkissing loops) to build its functional structures, further stabilized
by base stacking®. These interactions are highly sensitive to environ-
mental fluctuations and are hard to capture in silico owing to poorly
characterized energetic parameters.

These properties pose challenges to mainstream experimental
techniques’. X-ray crystallography, the traditional gold standard, is
hampered by the poor crystallization and phasing difficulties of RNA
molecules, which primarily arise from their high surface charge, limited
chemical diversity and susceptibility to degradation. Nuclear magnetic
resonance (NMR) spectroscopy, although ideal for studying dynamics,
isgenerally restricted tosmallRNAs (<50 nucleotides). For larger RNAs,
thelimited chemical shift dispersion among the four nucleotide types
leads tointractable spectral overlap. Cryo-EM, the modernsolution for
large assemblies, struggles with smaller protein-free RNAs due to the
low signal-to-noise ratios (SNRs) in their electron micrographs. The
conformational heterogeneity of RNAs also complicates the particle
alignment required for high-resolution reconstruction®, These difficul-
tiesresultinalimited number of solved RNA 3D structures, especially
for protein-free RNAs, hindering a comprehensive understanding of
RNA structures and functions.

Enhanced experimental approaches for RNA
structure determination

The experimental landscape of RNA structural biology is evolving rap-
idly, with recent breakthroughs focused on two major aspects. First,
the application of cryo-EM has broadened substantially to resolve
structures for an expanding range of RNA molecules. Second, there is
a growing emphasis on capturing conformational dynamics beyond
static snapshots.

Recent progress in cryo-EM for RNA structure determination
Cryo-EM, powered by single-particle analysis (SPA), has transformed
structural biology, abreakthrough recognized with the 2017 Nobel Prize
in Chemistry. However, cryo-EM was long considered most suitable for
large assemblies such as ribosomes and viruses, while struggling to
resolve small, protein-free RNAs (for example, <100 kDa). This limita-
tionisreflected in PDB; before 2022, for instance, no protein-free RNA
entry determined by cryo-EM had surpassed the resolution barrier of 3 A
(ref.9). Fortunately, recent experimental efforts, along with advances
in detector technology, have dramatically enhanced the capabilities
of cryo-EM, increasing the number of cryo-EM entries for protein-free
RNA from 50in2022to 171by July 2025. Crucially, several of these new
structures have achieved sub-3-A resolution (Supplementary Table1).
One notable advancement is the use of RNA ‘scaffolds’ to obtain
high-resolution structures of small RNAs. This strategy involves
introducing a large scaffold RNA molecule (typically >100 kDa) with
favorable biophysical properties and high resolution, such as group
lor group Il introns’ 2, The scaffold increases the overall molecular
weight of the sample, which in turn enhances the SNR and facilitates
particle picking/alignment during 3D reconstruction. This approach
has successfully resolved several RNA-only structures at the high-
est resolutions of - 3 A. For example, the resolution of Tetrahymena
group | intron was improved to sub-3 A by scaffolding itself’, that is,
assemblingitselfinto closed rings by installing kissing-loop sequences
onto its functionally nonessential stems, which can yield multiplied
molecular weights and mitigated structural flexibility. A more typical
example is the thiamine pyrophosphate (TPP) riboswitch with much
smaller molecular weights (<30 kDa; Fig. 1c), which was scaffolded by
apreviously solved group lICintron via covalentattachment through a
rigid helix'2. This strategy improved the resolutionto 2.5 A, allowing the
observation of the ligand-binding pocket. Although the full potential
of scaffold-based methods remains to be explored, this techniqueisa

crucial development for overcoming the previousinability of cryo-EM
to determine the structures of small RNAs.

The improved resolution of cryo-EM also facilitates the direct
observation of smallligands or water molecules. For example, through
extensive data collection and a next-generation electron detector,
researchers enhanced the resolution of the Tetrahymena ribozyme,
a highly solvated RNA molecule, from 3.1A to -2 A (ref. 13). These
high-resolution density maps enabled the visualization of distinct
water networks surrounding the RNA. Specifically, ordered, rigid water
molecules (Fig.1d, deep blue) were initially identified by the automated
segmentation-guided water and ion modeling (SWIM) algorithm, which
identifies water molecules based on density map segmentation and
physicochemical criteria. Surprisingly, the maps also revealed com-
plex, diffuse water networks (Fig. 1d, light blue) that are typically absent
from atomic models, anassignment supported by molecular dynamics
simulations. This work highlights the growing capability of cryo-EM to
provide amore complete picture of biomolecular structures, including
their dynamic solvent environments.

Another recent advance is the determination of the RNA oli-
gomeric structures without protein involvement. Using cryo-EM,
researchers have successfully resolved the structures of several
RNA oligomers in various states of assembly at resolutions of 2-4 A
(refs. 14-17; for example, the nanocage shown in Fig. 1e)". These
complex structures provide detailed insights into intermolecular
interactions, the mechanisms of RNA multivalency and the principles
governing the assembly of RNA-based molecular machines such as
the RNA nanocage.

Inadditionto novel experimental strategies, sample preparation
isalso a critical procedure for successful cryo-EM reconstruction. To
improve this process, researchers recently proposed a structured,
feedback-driven protocol for optimizing RNA samples'®. Unlike a
standard linear workflow, this protocol is distinguished by its rigor-
ous, iterative screening of preparation conditions, which is coupled
with data processing pipelines designed to resolve conformational
heterogeneity and modeling algorithms that build atomic coordi-
nates from the resulting density maps. This protocol was subsequently
applied to determine the structures of the aforementioned RNA oli-
gomers™, Furthermore, while extending cryo-EM to in situ structure
determination remains a substantial challenge, recent studies have
begun to explore this frontier®?. In conclusion, continued progress
is expected to further solidify the key role of cryo-EM in advancing
RNA structural biology.

Determining alternative conformations and dynamic
structures

Beyond static structure, understanding the inherent flexibility and
dynamics of RNA molecules is crucial for a comprehensive elucida-
tion of their functions, butis more challenging. Cryo-EM has emerged
as a powerful technique to explore these dynamics, as it can directly
visualize structural heterogeneity within numerous single particles
fromelectron micrographs. This capability has beengreatly enhanced
by methodological advances designed to improve SNR and resolve
conformational states, including sample preparation, sophisticated
two-dimensional (2D)/3D classification and 3D variability analysis,
which together characterize both discrete conformations and con-
tinuous motions* . For example, cryo-EM was used to determine the
‘cryoensemble’ of several coronavirus stem-loop 5 RNAs (such as the
one shown in Fig. 1f)??, capturing both the discrete conformational
states and the inherent flexibility of these molecules.

Meanwhile, time-resolved cryo-EM has been developed to cap-
ture transient states by flash-freezing samples at precise time points
after reaction initiation®* %, This method enables the visualization of
short-livedintermediates and has been applied to reveal the transient
intermediates of bacterial RNA polymerase during transcription®.
Although this technique remains challenging, as it requires precise
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temporal control and numerous particles to observe low-abundance
states, its application has shown potential for studying the transient
dynamics of RNAs using cryo-EM, afield that is still nascent.

Complementing SPA, cryo-electrontomography (cryo-ET) allows
for theinvestigation of RNA dynamicsinsitu, providing adirect view of
their structural states within the cell. Acommon strategy, resembling
that used in SPA, involves aligning and averaging subtomograms to
improve SNR for high-resolution 3D reconstruction, which has been
used to observe the conformational changes of a ribosome during
translation inside a bacterial cell*. By contrast, non-averaging meth-
ods such as individual-particle electron tomography® reconstruct
each particleindividually, thereby capturing transient and kinetically
trapped states missed by averaging approaches. This capability has
been demonstrated in the analysis of RNA origami self-folding. How-
ever, although individual-particle electron tomography provides a
more comprehensive view of the conformational landscape in princi-
ple, itsreliance on stringent conditions to overcome low SNR presents
abarrier toits widespread adoption.

Recent progress in other experimental approaches

Apart from cryo-EM and cryo-ET, other experimental approaches are
also advancing RNA structural biology. For example. antibody-assisted
RNA crystallography uses antigen-binding fragments (Fabs) as chap-
erones to facilitate the crystallization of otherwise intractable RNA
molecules. This technique has become particularly useful with the
discovery of Fab BL3-6, a versatile module that canbe engineered into
nearly any target RNA. The Fab BL3-6 system, including its engineered
variants, hasrecently accelerated the structure determination of sev-
eral challenging RNAs*>#, such as the yjdF riboswitch® and coxsacki-
evirus B3 cloverleaf RNA®.

Other experimental techniques are also providing crucial insights
into RNA dynamics. Atomic force microscopy (AFM), whichresolvesthe
topography of single molecules without averaging, is particularly suit-
ableforstudying structural heterogeneity. For example, low-resolution
AFM snapshots visualizing the vast conformational ensemble of the
cobalamin riboswitch® guided subsequent cryo-EM determination of
the atomic models for this riboswitch in different states*’. In parallel,
NMR spectroscopy continues to yield new insights into RNA dynam-
ics. For instance, a recent study used a new NMR strategy leveraging
chemical shift perturbations to rapidly quantify the conformational
propensity of HIV-1transactivation response RNA, directly linking this
biophysical property with the RNA’s activity in cells*.

Artificial intelligence for RNA structure
prediction

Despite accelerating experimental efforts, the growthin available RNA
structural datastill lags far behind the demand from the research com-
munity. This gap highlights the urgent need for robust computational
methods capable of rapid and accurate RNA structure prediction, a
long-standing challenge since the 1960s>. Following the revolution-
ary success of artificial intelligence (Al) in protein structure predic-
tion, especially the Nobel Prize-winning method AlphaFold2 (ref. 42),
the field is now applying similar Al strategies to advance RNA 3D
structure prediction.

Recent Al methods for RNA structure prediction

Al methods follow a general workflow for RNA structure prediction
(Fig.2). These approaches typically rely on two critical input features:
(1) multiple sequence alignment (MSA) and/or embedding from large
language models, which provide coevolutionary signals for deducing
long-range internucleotide contacts, and/or (2) predicted second-
ary structure, which offers base-pairing priors essential for 3D fold-
ing. Methodologically, these approaches can be divided into three
groups, that is, two-step, end-to-end and complex prediction, which
areintroduced below.

The initial attempts of Al-based RNA 3D structure prediction
adopted a two-step paradigm, largely inspired by AlphaFold2’s
transformer-based distogram prediction and trRosetta’s energy
minimization*. Representative approaches include DeepFoldRNA**
and trRosettaRNA*. These methods first use transformer networks
to predict a set of geometric restraints, which are then used to guide
the folding and reconstruction of an all-atom 3D structure via energy
minimization. The main benefit of this paradigm lies inits training effi-
ciency: by focusing on one-dimensional (1D) and 2D geometric targets,
it simplifies model training compared to fully end-to-end systems*°.
Furthermore, the rigorous energy minimization procedureimproves
the physicochemical plausibility of the generated structure models®.

However, the efficiency of two-step approaches is constrained by
two primary drawbacks: suboptimal optimization resulting from their
simplified training objectives and slow inference speeds caused by the
computationally intensive energy minimization step. This led the field
torapidly adapt the full end-to-end architecture of AlphaFold2 for RNA,
resulting in methods such as RhoFold+*” and NuFold*® that directly
predict all-atom coordinates using neural networks. These advances
alsoinvolve integrating RNA language models to compensate for the
often-sparse coevolutionary signals in MSAs, a feature leveraged by
RhoFold+. Although pure Al prediction can sometimes resultin severe
structuralviolations, a third strategy, represented by DRfold*, provides
ahybrid solution that combines coarse-grained end-to-end potentials
with geometricrestraints toimprove both predictive accuracy and the
physicochemical plausibility.

Thescope of Almethods has rapidly expanded beyond RNA mono-
mers, with a new generation of models such as AlphaFold3 (AF3)*,
RoseTTAFoldNA (RFNA)* and RoseTTAFold All-Atom®* aimed at pre-
dicting nucleic acid-protein assemblies and other vital biomolecular
interactions. Specifically, RFNA pioneered the deep learning-based
end-to-end prediction of protein-RNA complexes withits three-track
network architecture. RoseTTAFold All-Atom then broadened this
scope to include interactions with small molecules and ions. Con-
currently, AF3 also aims to predict a wide range of complexes, but it
uses a new diffusion model that enhances performance by enabling
extensive sampling.

Efforts for assessing RNA structure prediction

The scarcity of newly released RNA structures poses a challenge for the
fair and rigorous assessment of prediction methods. To overcome this,
community-wide blind assessment platforms like RNA-Puzzles and the
Critical Assessment of Structure Prediction (CASP) provide crucial
benchmarks. RNA-Puzzles, a classical platform, has provided over 60
targets for blind prediction since 2010 (ref. 53). More recently, CASP
introduced an RNA category in its 15th experiment (CASP15, 2022)**,
which involves 12 targets, including natural and synthetic RNAs, and
attracted over 40 participating groups. CASP16, heldin 2024, expanded
this effort™, with the number of targets growing to over 40 and partici-
pationincreasing tomore than 60 groups. Notably, CASP16 also marked
thefirstblind competitionthatintroduced categories for nucleic acid-
protein and nucleic acid-ligand complexes. These community-wide
efforts are vital for objectively evaluating prediction methods and
driving future innovation in the field.

Evaluation has also evolved. Classical RNA metrics like root mean
square deviation (r.m.s.d.), interaction network fidelity and deforma-
tion index have known limitations, including dependency on RNA
topology (r.m.s.d.and deformationindex) and anarrow focusonlocal
2Dinteractions (interaction network fidelity). To address these issues,
the field has adapted length-independent, 3D-aware metrics from
protein structure assessment>*>, such as global distance test-total
score (GDT-TS), template modeling score (TM-score) and local dis-
tance difference test (IDDT). The CASP community has used a scor-
ing system that integrates this diverse set of metrics** and recently
expanded to include motif and stoichiometry analyses, providing a
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Fig.2|Overview of the Al-driven RNA structure prediction pipeline and
example predictions. Top, ageneral pipeline of Al-driven RNA structure
prediction. Starting from an input nucleotide sequence, two sets of features

are constructed: the coevolutionary signals (MSA and/or large language model
(LLM) embedding) and/or predicted secondary structure. The network then
either predicts 2D geometries for subsequent 3D reconstruction (two-step
approach) or directly outputs the full-atom 3D structure (end-to-end approach).
Bottom, representative examples showing computational models (purple)

Mango Il aptamer ZTP riboswitch Group Il intron 6HB RNA origami
(36 nt) ) (64 nt) . (396 nt) . (720 nt) . .
rm.s.d.=1.4A rm.s.d.=1.3 A rm.s.d.=2.9A r.m.s.d. = 36.5 A (Al)/7.8 A (human)

superimposed on their experimental structures (green). From left to right: a
Mango Il aptamer (PDB 8U5K), aligand-binding ZTP riboswitch (PDB 8VQV;
ligands and ions shownin red) and two challenging large RNAs, agroup I

intron (CASP16 R1241) and a synthetic RNA origami (CASP15R1138, PDB 7PTL).
The predictions for the first three examples and the left origami model were
generated by trRosettaRNA2, whereas the right origami model was produced by
the human expert group Alchemy_RNA2; nt, nucleotides.

multidimensional view of predicted structure models®. Despite these
efforts, acrucial challenge remains: the suitability of these metrics for
RNAis not fully established. In contrast to proteins, no single metric has
yet proven sufficient to reliably describe the accuracy of a predicted
RNA structure.

In parallel with ground-truth-aware assessments, recent years
have seen the emergence of scoring functions for evaluating predicted
RNA structures. These span from knowledge-based approaches to
advanced deep learning models**°. A notable example, ARES*®, uses
anequivariant graph neural network to estimate model quality. These
toolsare valuable for guiding model selection and enhancing accuracy,
yet their reliability is hampered by fundamental challenges: the dif-
ficulty of designing accurate potentials and the scarcity of training
datafor deep learning models. As aresult, the development of highly
reliable scoring functions for RNA remains a considerable challenge,
leaving the field lagging behind the more established methods avail-
able for proteins.

Advances and challenges of Al-based methods

Comprehensive benchmark tests demonstrate that Al-based methods
outperform traditional automated approaches, such as those based
on energy minimization or fragment assembly. For example, trRoset-
taRNA achieves an average r.m.s.d. of less than half that of the tradi-
tional automated methods®. In addition to improved accuracy, the
predictionspeed has also beenincreased by graphics processing unit
(GPU)-powered neural network inference. For example, according to
the estimationin the AF3 paper®’, AF3 can predict the 3D structure of a
1,024-nucleotide RNA within 30 s starting from precomputed features.
Undoubtedly, Alhasboosted automated RNA 3D structure prediction.

The bottom of Fig. 2 presents three examples where Al methods have
yielded accurateresults, including anaptamer, aligand-binding ribos-
witch and alarger RNA with ~400 nucleotides.

Despite this recent progress, Al in RNA structure prediction has
not yet experienced its ‘AlphaFold moment™, as automated methods
still lag behind human experts. This performance gap is clearly dem-
onstrated in the CASP and RNA-Puzzles blind assessments>*~°, where
no automated approach, whether traditional or Al driven, has matched
the performance of top human groups, particularly on challenging
targets with novel and complex topologies (such as the synthetic RNA
origami shown in Fig. 2). This observation contrasts with the trend in
proteinstructure prediction, where human expertinterventions only
have limited effects in improving automated models®. As noted by
theleading human groupsin CASP15 and CASP16 (refs. 63-67), human
interventions remain essential, particularly for modeling challenging
targets such as the synthetic RNA origami.

Several key challenges hinder Al-based modeling of RNA 3D
structures. First, the aforementioned scarcity of 3D datais a primary
constraintonthe power of data-driven Alapproaches. Second, due to
algorithmic and database limitations, the MSAs for RNA are typically
of low quality®, providing weak or even erroneous coevolutionary sig-
nals that hamper the predictionaccuracy. Third, current Al predictors
largely neglect the intrinsic dynamics and environmental sensitivity
(for example, pH, ions) of RNA, which biases the learning process
toward the static snapshots deposited in PDB. Moreover, although
methods like AF3 and RFNA have been developed for modeling RNA-
protein complexes, the sparsity of both intermolecule coevolutionary
signals and available training data limits their ability to generalize to
novel complexes.
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Recent methods like trRosettaRNA2 (ref. 68) and DRfold2 (ref. 69)
have been proposed to mitigate the 3D data limitations by leveraging
2D structure priors and language models, respectively. Still, the per-
formance gap withleadinghuman experts remains. Thiswas evidentin
the recent CASP16 assessment, where our trRosettaRNA2-based server
(Yang-Server)®?, despite being the top-performing automated group,
still ranked behind three human groups™.

Interplay between experiment and computation
Despite their distinct challenges, experimental and computational
approaches are highly complementary, and their integrationis essential
for future progress. Although computational techniques facilitate rapid
and high-throughput analysis, experiments provide indispensable,
target-specific restraints. Their interplay already shows potential in
both fields. Computationally, theimpactis clearinaccelerating cryo-EM
structure determination®**’%"!, Versatile map-to-model pipelines like
Phenix’*provide an automated framework for diverse macromolecules,
while specialized tools such as auto-DRRAFTER”® optimize the process
for RNA by incorporating experimentally derived secondary structure
informationwithinaniterative, consensus-driven modeling framework.
Beyond atomic model building, computational methods also play a vital
role in data interpretation: clustering and simulations help validate
RNA dynamics observed experimentally??, and algorithms like SWIM
can identify ordered water molecules within high-resolution density
maps". This relationship is reciprocal. Experimental data, such as chemi-
cal shifts and reactivities, are helpful not only for guiding and refining
computational models>”* but also for training advanced foundation
models like RibonanzaNet” by providing direct supervision.

The interplay between experiment and computation is enter-
ing a new phase, driven by the development of methods specifically
designed forintegration. These new approaches combine experimental
datawith computational engines, aiming to break new groundin RNA
structure determination (Fig. 3).

Predicting RNA all-atom structures from cryo-EM maps
Although traditional approaches like auto-DRRAFTER have been
instrumental in cryo-EM-based RNA structure determination, they
oftenrely on predefined secondary structures and time-consuming
Monte Carlo searches, hindering their high-throughput application.
To address these limitations, deep learning has recently been applied
toimprove both the quality and efficiency of this process, that is, pre-
dicting all-atom structures from density maps.

Thegeneral pipeline for these methodsisillustrated in Fig. 3 (top).
Initial effortsin this directioninclude CryoREAD and DeepTracer-2.0
(ref. 77), which were developed for RNA and nucleic acid-protein
complexes, respectively. These methods use a two-stage framework
that first detects nucleotide components (phosphates, sugars and
bases) using a3D U-Net and thenbuilds anall-atom model viabackbone
tracing and sequence assignment. This was subsequently improved
by EMRNA"®, which used an advanced Swin-Conv-UNet network and
an optimized postprocessing procedure. Further extending this
capability, EM2NA”’ enabled the automated identification and mod-
eling of nucleic acids directly from raw complex maps. Moreover, the
development of tools like ModelAngelo®® demonstrates the power of
AlphaFold2-like architectures for improving model-building accuracy
across both proteins and RNAs.

These deeplearning-based methods achieve notableimprovement
in both accuracy and speed. For example, for input maps at resolu-
tions of 2-6 A, EMRNA achieved amedianr.m.s.d. of -2 A (for example,
the group lintron shown in Fig. 3), a substantial improvement over
auto-DRRAFTER (>6 A). Moreover, EMRNA can build a100-nucleotide
structure within 3 min. The development of such rapid and accurate
tools is crucial for accelerating the pace of RNA structural biology.
However, akey limitationis that current deep learning-based methods
are generally applicable only to high-resolution cryo-EM maps (for

example, <4 A). Accurate and automated structure determination from
medium- and low-resolution maps remains a substantial challenge that
requires future collaborative efforts to address®'.

Exploring RNA dynamics from experimental data

Although recent experimental efforts have demonstrated the potential
for exploring RNA structural dynamics, their success typically relieson
manual case-by-case analysis, such as elaborate sample preparation,
particle selection and clustering or expert interpretation of 3D map
variability. Such reliance on manual intervention hinders the auto-
mated and universal applications, highlighting the urgent need for
robust computational solutions that can systematically characterize
RNA dynamics.

In principle, 2D particle images offer a direct window into RNA
structural dynamics, as they reflect the full range of conformational
heterogeneity among samples. The primary challenge, however, is to
overcomethe low SNR of these images to distinguish true structural vari-
ations fromexperimental noise and different particle orientations. Deep
learning can offer asolution® %, A prominent approach, exemplified by
methods like CryoDRGN®?, uses deep generative models (for example,
variational autoencoder) toreconstruct heterogeneous 3D maps from
2D particleimages (Fig. 3, middle). These models encode the structural
information from each particle into a low-dimensional ‘latent space’.
By traversing this latent space, one can generate a smooth trajectory
of 3D maps that visualizes a continuous conformational change. This
methodology was subsequently extended toin situ reconstruction from
cryo-ET data®*°, However, while promising for large complexes like the
ribosome, their applicability to protein-free RNAs and the subsequent
automated building of all-atom models from their output heterogene-
ous maps has yet to be validated. Moreover, the requirement to retrain
the latent representation for each new dataset is computationally
demanding. Nevertheless, these generative approaches represent an
importantadvanceinthe automated exploration of structural dynam-
ics directly from raw particle images and can serve as a blueprint for
developing similar methods specifically for RNA.

Another key example of integrating computation and experiments
is the AFM-based determination of RNA conformers. Recognizing
the low-resolution nature of AFM, a computational framework was
developed toimprove the usage of these data (Fig. 3, bottom)®’. In this
approach, initialmodels are generated either computationally or from
other low-resolution experimental data such as small-angle X-ray scat-
tering. These models are then fitted to AFM topographicimages using
coarse-grained molecular dynamics simulations. A machine learning
pipeline named HORNET is then used to select the high-confidence
structures for final atomic structure construction. Specifically, HOR-
NET first applies unsupervised clustering tofilter the simulated models
and then uses a supervised deep neural network to score the mod-
els. This integrated framework has characterized the heterogeneous
conformers of RNase P RNA (Fig. 3) and the HIV-1 Rev response ele-
ment RNA at atomic resolution’*?. This work demonstrates that even
low-resolution topographic data can yield high-resolution insights
when coupled with computational techniques, further confirming the
potential of such integrative approaches.

Discussion

Building on the proven potential of integrating experimental and com-
putational approaches, the next wave of innovationin RNA structural
biology will likely emerge from their deeper interplay. We highlight
three critical directions that will be discussed below: the discovery of
new structured RNAs, the acceleration of structure determination pipe-
linesand the continued advancement of predictive Al-based algorithms.

Identification of a diverse set of new and structured RNAs
The currently solved RNAs in PDB exhibit considerable redundancy:
only <10% of structures (870 of 8,878) are nonredundant after removing
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Fig.3|Representative efforts for integrating experimental data with
computational modeling to elucidate RNA structure and dynamics. Cryo-EM-
and AFM-based efforts are shown. Based on specific strategies, this figure can
be divided into three parts from top to bottom. Top, cryo-EM for static structure
prediction. A 3D density map can be obtained from electron micrographs via
SPA. Deep learning methods like EMRNA then use a neural network to detect

the key nucleotide components from the map. Subsequent postprocessing
steps, including backbone tracing and sequence assignment, are then used to
build a final all-atom model. Middle, cryo-EM for dynamics. Alternatively, 2D
particleimages picked from raw micrographs can be leveraged by Al methods
like CryoDRGN to reconstruct a series of heterogeneous 3D density maps with a

Structural models
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variational autoencoder encoder-decoder architecture. Such methods enable
the exploration of dynamics for large biomolecules such as the ribosome.
Bottom, AFM for dynamics. The HORNET framework demonstrates the power

of AFM for studying RNA dynamics. In this framework, initial models (from
low-resolution experiments or structure prediction) are iteratively fitted into the
AFM topographicimages to simulate numerous structural models. Unsupervised
clustering and a supervised scoring neural network are then used to filter and
select high-confidence models for final atomic structure construction. This
framework has successfully characterized the structural heterogeneity of targets
like RNase P RNA.

redundancy at 80% sequenceidentity (Fig. 1b). Forexample, the ROOL
RNA nanocage structure has beenindependently solved by four differ-
entresearchgroups' . Although these repeated structures reinforce
the validity of this structure, it would be beneficial to allocate research
efforts toward a broader range of diverse RNAs.

However, not all RNAs are capable of folding into stable 3D struc-
tures. Therefore, the initial step should be to identify a diverse set of
newand structured RNAs, which can help minimize the costs associated
with experimental determination. A comparative analysis of specific
subsets of intergenic regions identified 224 promising candidates®,
including the recently solved ROOL RNA nanocage' . New Al-driven
approaches could be developed to further expand this list. Neverthe-
less, it is essential to carefully benchmark these methods to minimize
the false-positive rate. Ultimately, solving the structures of a diverse
array of new and structured RNAs will help illuminate the RNA world.

Accelerating RNA structure determination

The integrative efforts provide a path to accelerating experimental
structure determination. Incryo-EM, Al-powered tools are streamlining
complex workflows. Forinstance, 3D reconstruction methods such as
CryoDRGN simplify the classification of heterogeneous conforma-
tional states, whereas new map-to-model tools like EMRNA enable
the rapid and accurate interpretation of density maps. Furthermore,
Al-based structure prediction provides valuable molecular hypotheses

for experimental analysis. As evidenced by the CASP15 assessment®*”,

even predicted models of moderate accuracy canbe effectively refined
against density maps to generate plausible initial structures, bypass-
ing the laborious process of traditional de novo model building.
High-quality models can also be used to perform molecular replace-
menttoresolve the persistent phase problemin X-ray crystallography®.

Another promising directionis leveraging Al's predictive power to
lower theresolution requirements for structure determination, thereby
saving the considerable time and resources spent on high-resolution
experiments. Computational frameworks like HORNET exemplify
how atomic models can be yielded from low-resolution restraints.
Our prior work has shown that guiding trRosettaRNA2 with diverse
secondary structure inputs can recapitulate the 3D conformational
heterogeneity that mirrors AFM observations®®. The clear path forward,
therefore, is to develop conditional generative models that systemati-
callyincorporate awider spectrum of experimental databy translating
them into appropriate conditions, from chemical probing profiles as
1D conditions and cross-linking distances as 2D conditions to abstract
AFM data as an energy-based sampling guidance.

Improving Al-based RNA structure prediction algorithms

The promisinginterplay between experiment and computation hinges
onrobust Al-based predictive models. Current methods, whichrely on
MSAs and/or unsupervised language models, are limited by the simple
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four-letter nucleotide alphabet and the lack of reliable base-pairing
knowledge in standard homolog searches or masked language mod-
eling. Even supervised language models can be skewed by biased experi-
mental data for training. A promising path forward is to develop hybrid
RNA language models that merge broad, unsupervised pretraining
withtargeted, experiment-guided fine-tuning, incorporating smarter,
structure-aware tokenization and masking strategies. As seen in the
protein field, the improved language model powerfully enhances
structure predictionin two ways: by generating rich sequence embed-
dings as extrainputs®® or by improving homolog searches to produce
higher-quality MSAs® %,

In addition to sequence priors, structural templates offer
more powerful restraints if they exist, as shown in recent CASP
challenges®*>¢*¢71%] Nevertheless, their application is frequently lim-
ited by immature search algorithms and sparse template databases
relative to proteins. Future work should focus on better template
detection, perhaps using language models to boost sensitivity or by
integrating known local motifs like kink-turns and T-loops directly into
deep learning pipelines'®*

Conclusions

For decades, the intrinsic complexity of RNA molecules has hindered
both experimental determinationand computational prediction of RNA
3Dstructures. However, this landscapeis rapidly evolving, propelled by
the ongoingintegration of experimental techniques and Alinnovations.
As highlighted in this Perspective, this interplay is now the principal
forcedrivingthe field forward. Although a complete understanding of
the RNA world remains a distant goal, the path towarditis clearer than
ever. Thanks to the strengthening collaboration between structural
biologists and computational scientists, we have every reason to be
optimistic about our ability to illuminate the RNA world.

Data availability

All data used in this work were obtained from publicly available
sources. The 3D structure statistics and examples were sourced from
PDB (https://www.rcsb.org/) or CASP16 (https://predictioncenter.org/
casplé/index.cgi). Cryo-EM particleimages and 3D density maps were
obtained from EMPIAR (https://www.ebi.ac.uk/empiar/) and EMDB
(https://www.ebi.ac.uk/emdby/), respectively. The AFM images and 3D
conformational ensembles for RNase PRNA were sourced from the data
repository provided by the original authors® at https://home.ccr.cancer.
gov/csb/pnai/data/conformational_space/Conf_space_RNasePRNA/.
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