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Integrated experimental and AI innovations 
for RNA structure determination
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RNAs act as crucial ‘social’ mediators within the cell, orchestrating a wide 
array of biological processes. Their functionality hinges on their complex 
three-dimensional structures, which dictate stability, binding specificity and 
molecular interactions. In recent years, a surge of research has focused on 
solving and/or predicting RNA structures to unlock their functional secrets. 
However, the dynamic nature and unique physicochemical properties of 
RNAs pose notable challenges to accurate structural determination. This 
Perspective reviews recent breakthroughs in RNA structure determination, 
driven by innovative experimental techniques, such as cryo-electron 
microscopy, alongside artificial intelligence-based tools inspired by 
advances in protein structure prediction. We explore how integrative 
approaches that combine experimental and computational methods 
are proving particularly powerful in illuminating the RNA world, offering 
enhanced resolution and scalability. We discuss remaining challenges and 
opportunities to overcome these hurdles. By integrating experiments 
with computation, the field is poised to deepen our understanding of RNA 
biology, paving the way for transformative applications in biotechnology 
and medicine.
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RNA, historically regarded merely as a messenger for genetic informa-
tion, is now recognized as a pivotal molecule in the origin of life, as pro-
posed by the RNA World Hypothesis1. Like proteins, many RNAs, such as 
tRNA and rRNA, can fold into specific three-dimensional (3D) structures 
to perform diverse functions2. Through intricate base-pairing interac-
tions, including both the canonical Watson–Crick base pairs and a rich 
vocabulary of noncanonical pairings, RNA forms complex secondary 
structures like stems, loops and bulges. These elements then twist 
and pack together in 3D space, forming tertiary structures that allow 
RNA to bind with other molecules, catalyze biochemical reactions and 
regulate cellular processes.

Since the first tRNA computational model (1969)3 and crystal 
structure (1974)4 were published, the number of experimental RNA 
structures has grown almost exponentially in the Protein Data Bank 
(PDB5; Fig. 1a). Despite this impressive growth, a substantial data gap 
persists between RNA-containing entries (~8,000 in total, with ~2,000 

being protein free) and protein structures (>200,000). Furthermore, 
the existing RNA structure data are heavily biased toward certain types 
(for example, tRNAs and rRNAs). After removing redundancy and 
structures with fewer than ten nucleotides, the number of unique RNA 
structures reduces from ~8,000 to ~800 (Fig. 1b).

Why RNA structure is hard to solve
RNA differs from protein in several properties that present consider-
able challenges to its structure determination6. First, RNA is highly 
flexible, adopting a vast ensemble of conformations to conduct 
various biological functions. This flexibility hinders the enhance-
ment of resolution through averaging techniques in high-resolution 
experiments like X-ray crystallography and cryo-electron microscopy 
(cryo-EM). Second, its negatively charged backbone needs a precise 
ionic environment for stable folding, a condition that is difficult to 
replicate experimentally or model computationally. Third, beyond the 
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Fig. 1 | Growth of RNA structural data and examples for recent cryo-EM 
advancements. a, A timeline plotting the exponential growth of RNA-
containing entries in PDB (data as of July 2025), annotated with key milestones 
in experimental (yellow), computational (red) and integrated approaches 
(hybrid)3,4,45,47,51,58,76,78,91,92,104–106. DEDs, direct electron detectors. b, Statistics 
for RNA types in PDB (data as of July 2025). The nonredundant entries are 
derived by removing sequences with over 80% identity using the CD-HIT-EST 
program103, which by default excludes short fragments (ten or fewer nucleotides) 
for improved cluster stability. c–f, Examples of recent advancements in RNA 

structure determination by cryo-EM, including the structure of a small TPP 
riboswitch (PDB 9C6K; green) determined using an RNA scaffold (PDB 9C6J; 
red) strategy12 (c; note that the different PDB IDs are a result of masked local 
refinement, a process where the scaffold and target RNA were computationally 
isolated and refined individually); the Tetrahymena ribozyme (gray) shown with 
its ordered (deep blue) and diffuse (light blue) water molecules (PDB 9CBU and 
9CBX; d)13; the structure of the GOLLD RNA 14-mer nanocage (PDB 9MEE)15, with 
its inner circle highlighted (e) and three resolved conformations of a viral stem-
loop 5 (SL5) RNA (PDB 8UYE, 8UYG and 8UYJ; f)22.
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canonical Watson–Crick base pairs (A•U, G•C), RNA uses a variety of 
noncanonical interactions (for example, Hoogsteen pairs and wobble 
pairs) and tertiary motifs (for example, pseudoknots, G-quadruplexes 
and kissing loops) to build its functional structures, further stabilized 
by base stacking2. These interactions are highly sensitive to environ-
mental fluctuations and are hard to capture in silico owing to poorly 
characterized energetic parameters.

These properties pose challenges to mainstream experimental 
techniques7. X-ray crystallography, the traditional gold standard, is 
hampered by the poor crystallization and phasing difficulties of RNA 
molecules, which primarily arise from their high surface charge, limited 
chemical diversity and susceptibility to degradation. Nuclear magnetic 
resonance (NMR) spectroscopy, although ideal for studying dynamics, 
is generally restricted to small RNAs (<50 nucleotides). For larger RNAs, 
the limited chemical shift dispersion among the four nucleotide types 
leads to intractable spectral overlap. Cryo-EM, the modern solution for 
large assemblies, struggles with smaller protein-free RNAs due to the 
low signal-to-noise ratios (SNRs) in their electron micrographs. The 
conformational heterogeneity of RNAs also complicates the particle 
alignment required for high-resolution reconstruction8. These difficul-
ties result in a limited number of solved RNA 3D structures, especially 
for protein-free RNAs, hindering a comprehensive understanding of 
RNA structures and functions.

Enhanced experimental approaches for RNA 
structure determination
The experimental landscape of RNA structural biology is evolving rap-
idly, with recent breakthroughs focused on two major aspects. First, 
the application of cryo-EM has broadened substantially to resolve 
structures for an expanding range of RNA molecules. Second, there is 
a growing emphasis on capturing conformational dynamics beyond 
static snapshots.

Recent progress in cryo-EM for RNA structure determination
Cryo-EM, powered by single-particle analysis (SPA), has transformed 
structural biology, a breakthrough recognized with the 2017 Nobel Prize 
in Chemistry. However, cryo-EM was long considered most suitable for 
large assemblies such as ribosomes and viruses, while struggling to 
resolve small, protein-free RNAs (for example, <100 kDa). This limita-
tion is reflected in PDB; before 2022, for instance, no protein-free RNA 
entry determined by cryo-EM had surpassed the resolution barrier of 3 Å 
(ref. 9). Fortunately, recent experimental efforts, along with advances 
in detector technology, have dramatically enhanced the capabilities 
of cryo-EM, increasing the number of cryo-EM entries for protein-free 
RNA from 50 in 2022 to 171 by July 2025. Crucially, several of these new 
structures have achieved sub-3-Å resolution (Supplementary Table 1).

One notable advancement is the use of RNA ‘scaffolds’ to obtain 
high-resolution structures of small RNAs. This strategy involves 
introducing a large scaffold RNA molecule (typically >100 kDa) with 
favorable biophysical properties and high resolution, such as group 
I or group II introns9–12. The scaffold increases the overall molecular 
weight of the sample, which in turn enhances the SNR and facilitates 
particle picking/alignment during 3D reconstruction. This approach 
has successfully resolved several RNA-only structures at the high-
est resolutions of ~ 3 Å. For example, the resolution of Tetrahymena 
group I intron was improved to sub-3 Å by scaffolding itself9, that is, 
assembling itself into closed rings by installing kissing-loop sequences 
onto its functionally nonessential stems, which can yield multiplied 
molecular weights and mitigated structural flexibility. A more typical 
example is the thiamine pyrophosphate (TPP) riboswitch with much 
smaller molecular weights (<30 kDa; Fig. 1c), which was scaffolded by 
a previously solved group IIC intron via covalent attachment through a 
rigid helix12. This strategy improved the resolution to 2.5 Å, allowing the 
observation of the ligand-binding pocket. Although the full potential 
of scaffold-based methods remains to be explored, this technique is a 

crucial development for overcoming the previous inability of cryo-EM 
to determine the structures of small RNAs.

The improved resolution of cryo-EM also facilitates the direct 
observation of small ligands or water molecules. For example, through 
extensive data collection and a next-generation electron detector, 
researchers enhanced the resolution of the Tetrahymena ribozyme, 
a highly solvated RNA molecule, from 3.1 Å to ~2 Å (ref. 13). These 
high-resolution density maps enabled the visualization of distinct 
water networks surrounding the RNA. Specifically, ordered, rigid water 
molecules (Fig. 1d, deep blue) were initially identified by the automated 
segmentation-guided water and ion modeling (SWIM) algorithm, which 
identifies water molecules based on density map segmentation and 
physicochemical criteria. Surprisingly, the maps also revealed com-
plex, diffuse water networks (Fig. 1d, light blue) that are typically absent 
from atomic models, an assignment supported by molecular dynamics 
simulations. This work highlights the growing capability of cryo-EM to 
provide a more complete picture of biomolecular structures, including 
their dynamic solvent environments.

Another recent advance is the determination of the RNA oli-
gomeric structures without protein involvement. Using cryo-EM, 
researchers have successfully resolved the structures of several 
RNA oligomers in various states of assembly at resolutions of 2~4 Å  
(refs. 14–17; for example, the nanocage shown in Fig. 1e)15. These 
complex structures provide detailed insights into intermolecular 
interactions, the mechanisms of RNA multivalency and the principles 
governing the assembly of RNA-based molecular machines such as 
the RNA nanocage.

In addition to novel experimental strategies, sample preparation 
is also a critical procedure for successful cryo-EM reconstruction. To 
improve this process, researchers recently proposed a structured, 
feedback-driven protocol for optimizing RNA samples18. Unlike a 
standard linear workflow, this protocol is distinguished by its rigor-
ous, iterative screening of preparation conditions, which is coupled 
with data processing pipelines designed to resolve conformational 
heterogeneity and modeling algorithms that build atomic coordi-
nates from the resulting density maps. This protocol was subsequently 
applied to determine the structures of the aforementioned RNA oli-
gomers14. Furthermore, while extending cryo-EM to in situ structure 
determination remains a substantial challenge, recent studies have 
begun to explore this frontier19–21. In conclusion, continued progress 
is expected to further solidify the key role of cryo-EM in advancing 
RNA structural biology.

Determining alternative conformations and dynamic 
structures
Beyond static structure, understanding the inherent flexibility and 
dynamics of RNA molecules is crucial for a comprehensive elucida-
tion of their functions, but is more challenging. Cryo-EM has emerged 
as a powerful technique to explore these dynamics, as it can directly 
visualize structural heterogeneity within numerous single particles 
from electron micrographs. This capability has been greatly enhanced 
by methodological advances designed to improve SNR and resolve 
conformational states, including sample preparation, sophisticated 
two-dimensional (2D)/3D classification and 3D variability analysis, 
which together characterize both discrete conformations and con-
tinuous motions22–25. For example, cryo-EM was used to determine the 
‘cryoensemble’ of several coronavirus stem-loop 5 RNAs (such as the 
one shown in Fig. 1f)22, capturing both the discrete conformational 
states and the inherent flexibility of these molecules.

Meanwhile, time-resolved cryo-EM has been developed to cap-
ture transient states by flash-freezing samples at precise time points 
after reaction initiation26–28. This method enables the visualization of 
short-lived intermediates and has been applied to reveal the transient 
intermediates of bacterial RNA polymerase during transcription29. 
Although this technique remains challenging, as it requires precise 
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temporal control and numerous particles to observe low-abundance 
states, its application has shown potential for studying the transient 
dynamics of RNAs using cryo-EM, a field that is still nascent.

Complementing SPA, cryo-electron tomography (cryo-ET) allows 
for the investigation of RNA dynamics in situ, providing a direct view of 
their structural states within the cell. A common strategy, resembling 
that used in SPA, involves aligning and averaging subtomograms to 
improve SNR for high-resolution 3D reconstruction, which has been 
used to observe the conformational changes of a ribosome during 
translation inside a bacterial cell30. By contrast, non-averaging meth-
ods such as individual-particle electron tomography31 reconstruct 
each particle individually, thereby capturing transient and kinetically 
trapped states missed by averaging approaches. This capability has 
been demonstrated in the analysis of RNA origami self-folding. How-
ever, although individual-particle electron tomography provides a 
more comprehensive view of the conformational landscape in princi-
ple, its reliance on stringent conditions to overcome low SNR presents 
a barrier to its widespread adoption.

Recent progress in other experimental approaches
Apart from cryo-EM and cryo-ET, other experimental approaches are 
also advancing RNA structural biology. For example. antibody-assisted 
RNA crystallography uses antigen-binding fragments (Fabs) as chap-
erones to facilitate the crystallization of otherwise intractable RNA 
molecules. This technique has become particularly useful with the 
discovery of Fab BL3-6, a versatile module that can be engineered into 
nearly any target RNA. The Fab BL3-6 system, including its engineered 
variants, has recently accelerated the structure determination of sev-
eral challenging RNAs32–38, such as the yjdF riboswitch32 and coxsacki-
evirus B3 cloverleaf RNA33.

Other experimental techniques are also providing crucial insights 
into RNA dynamics. Atomic force microscopy (AFM), which resolves the 
topography of single molecules without averaging, is particularly suit-
able for studying structural heterogeneity. For example, low-resolution 
AFM snapshots visualizing the vast conformational ensemble of the 
cobalamin riboswitch39 guided subsequent cryo-EM determination of 
the atomic models for this riboswitch in different states40. In parallel, 
NMR spectroscopy continues to yield new insights into RNA dynam-
ics. For instance, a recent study used a new NMR strategy leveraging 
chemical shift perturbations to rapidly quantify the conformational 
propensity of HIV-1 transactivation response RNA, directly linking this 
biophysical property with the RNA’s activity in cells41.

Artificial intelligence for RNA structure 
prediction
Despite accelerating experimental efforts, the growth in available RNA 
structural data still lags far behind the demand from the research com-
munity. This gap highlights the urgent need for robust computational 
methods capable of rapid and accurate RNA structure prediction, a 
long-standing challenge since the 1960s3. Following the revolution-
ary success of artificial intelligence (AI) in protein structure predic-
tion, especially the Nobel Prize-winning method AlphaFold2 (ref. 42),  
the field is now applying similar AI strategies to advance RNA 3D 
structure prediction.

Recent AI methods for RNA structure prediction
AI methods follow a general workflow for RNA structure prediction 
(Fig. 2). These approaches typically rely on two critical input features: 
(1) multiple sequence alignment (MSA) and/or embedding from large 
language models, which provide coevolutionary signals for deducing 
long-range internucleotide contacts, and/or (2) predicted second-
ary structure, which offers base-pairing priors essential for 3D fold-
ing. Methodologically, these approaches can be divided into three 
groups, that is, two-step, end-to-end and complex prediction, which 
are introduced below.

The initial attempts of AI-based RNA 3D structure prediction 
adopted a two-step paradigm, largely inspired by AlphaFold2’s 
transformer-based distogram prediction and trRosetta’s energy 
minimization43. Representative approaches include DeepFoldRNA44 
and trRosettaRNA45. These methods first use transformer networks 
to predict a set of geometric restraints, which are then used to guide 
the folding and reconstruction of an all-atom 3D structure via energy 
minimization. The main benefit of this paradigm lies in its training effi-
ciency: by focusing on one-dimensional (1D) and 2D geometric targets, 
it simplifies model training compared to fully end-to-end systems46. 
Furthermore, the rigorous energy minimization procedure improves 
the physicochemical plausibility of the generated structure models45.

However, the efficiency of two-step approaches is constrained by 
two primary drawbacks: suboptimal optimization resulting from their 
simplified training objectives and slow inference speeds caused by the 
computationally intensive energy minimization step. This led the field 
to rapidly adapt the full end-to-end architecture of AlphaFold2 for RNA, 
resulting in methods such as RhoFold+47 and NuFold48 that directly 
predict all-atom coordinates using neural networks. These advances 
also involve integrating RNA language models to compensate for the 
often-sparse coevolutionary signals in MSAs, a feature leveraged by 
RhoFold+. Although pure AI prediction can sometimes result in severe 
structural violations, a third strategy, represented by DRfold49, provides 
a hybrid solution that combines coarse-grained end-to-end potentials 
with geometric restraints to improve both predictive accuracy and the 
physicochemical plausibility.

The scope of AI methods has rapidly expanded beyond RNA mono-
mers, with a new generation of models such as AlphaFold3 (AF3)50, 
RoseTTAFoldNA (RFNA)51 and RoseTTAFold All-Atom52 aimed at pre-
dicting nucleic acid–protein assemblies and other vital biomolecular 
interactions. Specifically, RFNA pioneered the deep learning-based 
end-to-end prediction of protein–RNA complexes with its three-track 
network architecture. RoseTTAFold All-Atom then broadened this 
scope to include interactions with small molecules and ions. Con-
currently, AF3 also aims to predict a wide range of complexes, but it 
uses a new diffusion model that enhances performance by enabling 
extensive sampling.

Efforts for assessing RNA structure prediction
The scarcity of newly released RNA structures poses a challenge for the 
fair and rigorous assessment of prediction methods. To overcome this, 
community-wide blind assessment platforms like RNA-Puzzles and the 
Critical Assessment of Structure Prediction (CASP) provide crucial 
benchmarks. RNA-Puzzles, a classical platform, has provided over 60 
targets for blind prediction since 2010 (ref. 53). More recently, CASP 
introduced an RNA category in its 15th experiment (CASP15, 2022)54, 
which involves 12 targets, including natural and synthetic RNAs, and 
attracted over 40 participating groups. CASP16, held in 2024, expanded 
this effort55, with the number of targets growing to over 40 and partici-
pation increasing to more than 60 groups. Notably, CASP16 also marked 
the first blind competition that introduced categories for nucleic acid–
protein and nucleic acid–ligand complexes. These community-wide 
efforts are vital for objectively evaluating prediction methods and 
driving future innovation in the field.

Evaluation has also evolved. Classical RNA metrics like root mean 
square deviation (r.m.s.d.), interaction network fidelity and deforma-
tion index have known limitations, including dependency on RNA 
topology (r.m.s.d. and deformation index) and a narrow focus on local 
2D interactions (interaction network fidelity). To address these issues, 
the field has adapted length-independent, 3D-aware metrics from 
protein structure assessment54,55, such as global distance test-total 
score (GDT-TS), template modeling score (TM-score) and local dis-
tance difference test (lDDT). The CASP community has used a scor-
ing system that integrates this diverse set of metrics54 and recently 
expanded to include motif and stoichiometry analyses, providing a 
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multidimensional view of predicted structure models55. Despite these 
efforts, a crucial challenge remains: the suitability of these metrics for 
RNA is not fully established. In contrast to proteins, no single metric has 
yet proven sufficient to reliably describe the accuracy of a predicted 
RNA structure.

In parallel with ground-truth-aware assessments, recent years 
have seen the emergence of scoring functions for evaluating predicted 
RNA structures. These span from knowledge-based approaches to 
advanced deep learning models56–60. A notable example, ARES58, uses 
an equivariant graph neural network to estimate model quality. These 
tools are valuable for guiding model selection and enhancing accuracy, 
yet their reliability is hampered by fundamental challenges: the dif-
ficulty of designing accurate potentials and the scarcity of training 
data for deep learning models. As a result, the development of highly 
reliable scoring functions for RNA remains a considerable challenge, 
leaving the field lagging behind the more established methods avail-
able for proteins.

Advances and challenges of AI-based methods
Comprehensive benchmark tests demonstrate that AI-based methods 
outperform traditional automated approaches, such as those based 
on energy minimization or fragment assembly. For example, trRoset-
taRNA achieves an average r.m.s.d. of less than half that of the tradi-
tional automated methods45. In addition to improved accuracy, the 
prediction speed has also been increased by graphics processing unit 
(GPU)-powered neural network inference. For example, according to 
the estimation in the AF3 paper50, AF3 can predict the 3D structure of a 
1,024-nucleotide RNA within 30 s starting from precomputed features. 
Undoubtedly, AI has boosted automated RNA 3D structure prediction. 

The bottom of Fig. 2 presents three examples where AI methods have 
yielded accurate results, including an aptamer, a ligand-binding ribos-
witch and a larger RNA with ~400 nucleotides.

Despite this recent progress, AI in RNA structure prediction has 
not yet experienced its ‘AlphaFold moment’61, as automated methods 
still lag behind human experts. This performance gap is clearly dem-
onstrated in the CASP and RNA-Puzzles blind assessments53–55, where 
no automated approach, whether traditional or AI driven, has matched 
the performance of top human groups, particularly on challenging 
targets with novel and complex topologies (such as the synthetic RNA 
origami shown in Fig. 2). This observation contrasts with the trend in 
protein structure prediction, where human expert interventions only 
have limited effects in improving automated models62. As noted by 
the leading human groups in CASP15 and CASP16 (refs. 63–67), human 
interventions remain essential, particularly for modeling challenging 
targets such as the synthetic RNA origami.

Several key challenges hinder AI-based modeling of RNA 3D 
structures. First, the aforementioned scarcity of 3D data is a primary 
constraint on the power of data-driven AI approaches. Second, due to 
algorithmic and database limitations, the MSAs for RNA are typically 
of low quality61, providing weak or even erroneous coevolutionary sig-
nals that hamper the prediction accuracy. Third, current AI predictors 
largely neglect the intrinsic dynamics and environmental sensitivity 
(for example, pH, ions) of RNA, which biases the learning process 
toward the static snapshots deposited in PDB. Moreover, although 
methods like AF3 and RFNA have been developed for modeling RNA–
protein complexes, the sparsity of both intermolecule coevolutionary 
signals and available training data limits their ability to generalize to 
novel complexes.
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Fig. 2 | Overview of the AI-driven RNA structure prediction pipeline and 
example predictions. Top, a general pipeline of AI-driven RNA structure 
prediction. Starting from an input nucleotide sequence, two sets of features 
are constructed: the coevolutionary signals (MSA and/or large language model 
(LLM) embedding) and/or predicted secondary structure. The network then 
either predicts 2D geometries for subsequent 3D reconstruction (two-step 
approach) or directly outputs the full-atom 3D structure (end-to-end approach). 
Bottom, representative examples showing computational models (purple) 

superimposed on their experimental structures (green). From left to right: a 
Mango II aptamer (PDB 8U5K), a ligand-binding ZTP riboswitch (PDB 8VQV; 
ligands and ions shown in red) and two challenging large RNAs, a group II 
intron (CASP16 R1241) and a synthetic RNA origami (CASP15 R1138, PDB 7PTL). 
The predictions for the first three examples and the left origami model were 
generated by trRosettaRNA2, whereas the right origami model was produced by 
the human expert group Alchemy_RNA2; nt, nucleotides.
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Recent methods like trRosettaRNA2 (ref. 68) and DRfold2 (ref. 69) 
have been proposed to mitigate the 3D data limitations by leveraging 
2D structure priors and language models, respectively. Still, the per-
formance gap with leading human experts remains. This was evident in 
the recent CASP16 assessment, where our trRosettaRNA2-based server 
(Yang-Server)62, despite being the top-performing automated group, 
still ranked behind three human groups55.

Interplay between experiment and computation
Despite their distinct challenges, experimental and computational 
approaches are highly complementary, and their integration is essential 
for future progress. Although computational techniques facilitate rapid 
and high-throughput analysis, experiments provide indispensable, 
target-specific restraints. Their interplay already shows potential in 
both fields. Computationally, the impact is clear in accelerating cryo-EM 
structure determination22,23,70,71. Versatile map-to-model pipelines like 
Phenix72 provide an automated framework for diverse macromolecules, 
while specialized tools such as auto-DRRAFTER70 optimize the process 
for RNA by incorporating experimentally derived secondary structure 
information within an iterative, consensus-driven modeling framework. 
Beyond atomic model building, computational methods also play a vital 
role in data interpretation: clustering and simulations help validate 
RNA dynamics observed experimentally22, and algorithms like SWIM 
can identify ordered water molecules within high-resolution density 
maps13. This relationship is reciprocal. Experimental data, such as chemi-
cal shifts and reactivities, are helpful not only for guiding and refining 
computational models73,74 but also for training advanced foundation 
models like RibonanzaNet75 by providing direct supervision.

The interplay between experiment and computation is enter-
ing a new phase, driven by the development of methods specifically 
designed for integration. These new approaches combine experimental 
data with computational engines, aiming to break new ground in RNA 
structure determination (Fig. 3).

Predicting RNA all-atom structures from cryo-EM maps
Although traditional approaches like auto-DRRAFTER have been 
instrumental in cryo-EM-based RNA structure determination, they 
often rely on predefined secondary structures and time-consuming 
Monte Carlo searches, hindering their high-throughput application. 
To address these limitations, deep learning has recently been applied 
to improve both the quality and efficiency of this process, that is, pre-
dicting all-atom structures from density maps.

The general pipeline for these methods is illustrated in Fig. 3 (top). 
Initial efforts in this direction include CryoREAD76 and DeepTracer-2.0 
(ref. 77), which were developed for RNA and nucleic acid–protein 
complexes, respectively. These methods use a two-stage framework 
that first detects nucleotide components (phosphates, sugars and 
bases) using a 3D U-Net and then builds an all-atom model via backbone 
tracing and sequence assignment. This was subsequently improved 
by EMRNA78, which used an advanced Swin-Conv-UNet network and 
an optimized postprocessing procedure. Further extending this 
capability, EM2NA79 enabled the automated identification and mod-
eling of nucleic acids directly from raw complex maps. Moreover, the 
development of tools like ModelAngelo80 demonstrates the power of 
AlphaFold2-like architectures for improving model-building accuracy 
across both proteins and RNAs.

These deep learning-based methods achieve notable improvement 
in both accuracy and speed. For example, for input maps at resolu-
tions of 2~6 Å, EMRNA achieved a median r.m.s.d. of ~2 Å (for example, 
the group I intron shown in Fig. 3), a substantial improvement over 
auto-DRRAFTER (>6 Å). Moreover, EMRNA can build a 100-nucleotide 
structure within 3 min. The development of such rapid and accurate 
tools is crucial for accelerating the pace of RNA structural biology. 
However, a key limitation is that current deep learning-based methods 
are generally applicable only to high-resolution cryo-EM maps (for 

example, <4 Å). Accurate and automated structure determination from 
medium- and low-resolution maps remains a substantial challenge that 
requires future collaborative efforts to address81.

Exploring RNA dynamics from experimental data
Although recent experimental efforts have demonstrated the potential 
for exploring RNA structural dynamics, their success typically relies on 
manual case-by-case analysis, such as elaborate sample preparation, 
particle selection and clustering or expert interpretation of 3D map 
variability. Such reliance on manual intervention hinders the auto-
mated and universal applications, highlighting the urgent need for 
robust computational solutions that can systematically characterize 
RNA dynamics.

In principle, 2D particle images offer a direct window into RNA 
structural dynamics, as they reflect the full range of conformational 
heterogeneity among samples. The primary challenge, however, is to 
overcome the low SNR of these images to distinguish true structural vari-
ations from experimental noise and different particle orientations. Deep 
learning can offer a solution82–88. A prominent approach, exemplified by 
methods like CryoDRGN82, uses deep generative models (for example, 
variational autoencoder) to reconstruct heterogeneous 3D maps from 
2D particle images (Fig. 3, middle). These models encode the structural 
information from each particle into a low-dimensional ‘latent space’. 
By traversing this latent space, one can generate a smooth trajectory 
of 3D maps that visualizes a continuous conformational change. This 
methodology was subsequently extended to in situ reconstruction from 
cryo-ET data89,90. However, while promising for large complexes like the 
ribosome, their applicability to protein-free RNAs and the subsequent 
automated building of all-atom models from their output heterogene-
ous maps has yet to be validated. Moreover, the requirement to retrain 
the latent representation for each new dataset is computationally 
demanding. Nevertheless, these generative approaches represent an 
important advance in the automated exploration of structural dynam-
ics directly from raw particle images and can serve as a blueprint for 
developing similar methods specifically for RNA.

Another key example of integrating computation and experiments 
is the AFM-based determination of RNA conformers. Recognizing 
the low-resolution nature of AFM, a computational framework was 
developed to improve the usage of these data (Fig. 3, bottom)91. In this 
approach, initial models are generated either computationally or from 
other low-resolution experimental data such as small-angle X-ray scat-
tering. These models are then fitted to AFM topographic images using 
coarse-grained molecular dynamics simulations. A machine learning 
pipeline named HORNET is then used to select the high-confidence 
structures for final atomic structure construction. Specifically, HOR-
NET first applies unsupervised clustering to filter the simulated models 
and then uses a supervised deep neural network to score the mod-
els. This integrated framework has characterized the heterogeneous 
conformers of RNase P RNA (Fig. 3) and the HIV-1 Rev response ele-
ment RNA at atomic resolution91,92. This work demonstrates that even 
low-resolution topographic data can yield high-resolution insights 
when coupled with computational techniques, further confirming the 
potential of such integrative approaches.

Discussion
Building on the proven potential of integrating experimental and com-
putational approaches, the next wave of innovation in RNA structural 
biology will likely emerge from their deeper interplay. We highlight 
three critical directions that will be discussed below: the discovery of 
new structured RNAs, the acceleration of structure determination pipe-
lines and the continued advancement of predictive AI-based algorithms.

Identification of a diverse set of new and structured RNAs
The currently solved RNAs in PDB exhibit considerable redundancy: 
only <10% of structures (870 of 8,878) are nonredundant after removing 
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redundancy at 80% sequence identity (Fig. 1b). For example, the ROOL 
RNA nanocage structure has been independently solved by four differ-
ent research groups14–17. Although these repeated structures reinforce 
the validity of this structure, it would be beneficial to allocate research 
efforts toward a broader range of diverse RNAs.

However, not all RNAs are capable of folding into stable 3D struc-
tures. Therefore, the initial step should be to identify a diverse set of 
new and structured RNAs, which can help minimize the costs associated 
with experimental determination. A comparative analysis of specific 
subsets of intergenic regions identified 224 promising candidates93, 
including the recently solved ROOL RNA nanocage14–17. New AI-driven 
approaches could be developed to further expand this list. Neverthe-
less, it is essential to carefully benchmark these methods to minimize 
the false-positive rate. Ultimately, solving the structures of a diverse 
array of new and structured RNAs will help illuminate the RNA world.

Accelerating RNA structure determination
The integrative efforts provide a path to accelerating experimental 
structure determination. In cryo-EM, AI-powered tools are streamlining 
complex workflows. For instance, 3D reconstruction methods such as 
CryoDRGN simplify the classification of heterogeneous conforma-
tional states, whereas new map-to-model tools like EMRNA enable 
the rapid and accurate interpretation of density maps. Furthermore, 
AI-based structure prediction provides valuable molecular hypotheses 

for experimental analysis. As evidenced by the CASP15 assessment94,95, 
even predicted models of moderate accuracy can be effectively refined 
against density maps to generate plausible initial structures, bypass-
ing the laborious process of traditional de novo model building. 
High-quality models can also be used to perform molecular replace-
ment to resolve the persistent phase problem in X-ray crystallography94.

Another promising direction is leveraging AI’s predictive power to 
lower the resolution requirements for structure determination, thereby 
saving the considerable time and resources spent on high-resolution 
experiments. Computational frameworks like HORNET exemplify 
how atomic models can be yielded from low-resolution restraints. 
Our prior work has shown that guiding trRosettaRNA2 with diverse 
secondary structure inputs can recapitulate the 3D conformational 
heterogeneity that mirrors AFM observations68. The clear path forward, 
therefore, is to develop conditional generative models that systemati-
cally incorporate a wider spectrum of experimental data by translating 
them into appropriate conditions, from chemical probing profiles as 
1D conditions and cross-linking distances as 2D conditions to abstract 
AFM data as an energy-based sampling guidance.

Improving AI-based RNA structure prediction algorithms
The promising interplay between experiment and computation hinges 
on robust AI-based predictive models. Current methods, which rely on 
MSAs and/or unsupervised language models, are limited by the simple 
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Fig. 3 | Representative efforts for integrating experimental data with 
computational modeling to elucidate RNA structure and dynamics. Cryo-EM- 
and AFM-based efforts are shown. Based on specific strategies, this figure can 
be divided into three parts from top to bottom. Top, cryo-EM for static structure 
prediction. A 3D density map can be obtained from electron micrographs via 
SPA. Deep learning methods like EMRNA then use a neural network to detect 
the key nucleotide components from the map. Subsequent postprocessing 
steps, including backbone tracing and sequence assignment, are then used to 
build a final all-atom model. Middle, cryo-EM for dynamics. Alternatively, 2D 
particle images picked from raw micrographs can be leveraged by AI methods 
like CryoDRGN to reconstruct a series of heterogeneous 3D density maps with a 

variational autoencoder encoder–decoder architecture. Such methods enable 
the exploration of dynamics for large biomolecules such as the ribosome. 
Bottom, AFM for dynamics. The HORNET framework demonstrates the power 
of AFM for studying RNA dynamics. In this framework, initial models (from 
low-resolution experiments or structure prediction) are iteratively fitted into the 
AFM topographic images to simulate numerous structural models. Unsupervised 
clustering and a supervised scoring neural network are then used to filter and 
select high-confidence models for final atomic structure construction. This 
framework has successfully characterized the structural heterogeneity of targets 
like RNase P RNA.
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four-letter nucleotide alphabet and the lack of reliable base-pairing 
knowledge in standard homolog searches or masked language mod-
eling. Even supervised language models can be skewed by biased experi-
mental data for training. A promising path forward is to develop hybrid 
RNA language models that merge broad, unsupervised pretraining 
with targeted, experiment-guided fine-tuning, incorporating smarter, 
structure-aware tokenization and masking strategies. As seen in the 
protein field, the improved language model powerfully enhances 
structure prediction in two ways: by generating rich sequence embed-
dings as extra inputs96 or by improving homolog searches to produce 
higher-quality MSAs97–100.

In addition to sequence priors, structural templates offer 
more powerful restraints if they exist, as shown in recent CASP 
challenges55,62,66,67,101. Nevertheless, their application is frequently lim-
ited by immature search algorithms and sparse template databases 
relative to proteins. Future work should focus on better template 
detection, perhaps using language models to boost sensitivity or by 
integrating known local motifs like kink-turns and T-loops directly into 
deep learning pipelines102.

Conclusions
For decades, the intrinsic complexity of RNA molecules has hindered 
both experimental determination and computational prediction of RNA 
3D structures. However, this landscape is rapidly evolving, propelled by 
the ongoing integration of experimental techniques and AI innovations. 
As highlighted in this Perspective, this interplay is now the principal 
force driving the field forward. Although a complete understanding of 
the RNA world remains a distant goal, the path toward it is clearer than 
ever. Thanks to the strengthening collaboration between structural 
biologists and computational scientists, we have every reason to be 
optimistic about our ability to illuminate the RNA world.

Data availability
All data used in this work were obtained from publicly available 
sources. The 3D structure statistics and examples were sourced from 
PDB (https://www.rcsb.org/) or CASP16 (https://predictioncenter.org/
casp16/index.cgi). Cryo-EM particle images and 3D density maps were 
obtained from EMPIAR (https://www.ebi.ac.uk/empiar/) and EMDB 
(https://www.ebi.ac.uk/emdb/), respectively. The AFM images and 3D 
conformational ensembles for RNase P RNA were sourced from the data 
repository provided by the original authors91 at https://home.ccr.cancer.
gov/csb/pnai/data/conformational_space/Conf_space_RNasePRNA/.
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