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Supplementary Information 

 

S1. Performance evaluation 

 

S1.1 Running time and GPU memory usage 

We evaluated CryoAtom’s running time as a function of protein length on the 177 high-

resolution maps using a single GPU (A100, ~15G memory) (Fig. S1a). The running 

time increases linearly with protein length. CryoAtom can build a structure of 

approximately 40,000 residues in about 3.5 hours. CryoAtom allows users to balance 

GPU memory and running time. By default, CryoAtom processes 300 residues at a time, 

using ~13 GB of GPU memory. An additional ~1 GB of memory is required for every 

100 extra residues. Fig. S1b illustrates the running time for the PDB entry 8FNV 

(>9,000 residues) under three configurations. Increasing GPU memory by 1.6 times 

(from 15GB to 24GB) results in acceleration of the speed by 1.5 times (from 44 minutes 

to 30 minutes). This linear relationship can be generalized to proteins of any length. In 

additional tests, the accuracy of predicted models remains consistent with increased 

crop size. 

 

S1.2 Evaluation metrics 

We used the same set of evaluation metrics defined by ModelAngelo 1, including 

backbone recall, backbone precision, backbone RMSD, Cα RMSD, amino acid 

accuracy, and completeness.  

 Backbone recall is the fraction of deposited residues (represented by Cα atoms) that 

have a predicted residue (represented by Cα atom) within 3 Å.  

 Backbone precision is the fraction of predicted residues (represented by Cα atoms) 

that have a deposited residue (represented by Cα atom) within 3 Å.  

 

The remaining subsequent metrics involve the matching between deposited residues 

and predicted residues, and only consider the deposited residues that have a predicted 

residue within 3 Å. We first calculate the distances between the Cα atoms in predicted 

structure and the Cα atoms in deposited structure. The Hungarian Matching Algorithm2 

is then used to match the predicted residues with the deposited residues such that the 

total distance is minimized. The metrics can be defined based on the matched residue 

pairs.  
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Let p represent the number of matched residues that have the same amino acid identity; 

m represent the total number of matched residues; and n represent the total number of 

residues in the deposited structure. 

 Cα RMSD is the root-mean-square deviation (RMSD) between the Cα atoms of the 

matched residue pairs. 

 Backbone RMSD is similar to the former but includes all four main-chain atoms 

(Cα, C, O, and N).  

 Amino acid accuracy is the fraction of residue pairs that share identical amino acid 

types (i.e., p/m) . 

 Completeness is the fraction of all deposited residues (including those unmatched 

residues) that have a matched predicted residue with the same amino acid identity 

(i.e., p/n). It is worth noting that Completeness ≈ Backbone recall × Amino acid 

accuracy. 

 

S1.3 Sensitivity analysis of CryoAtom to hyperparameters 

CryoAtom has many hyperparameters during the inference phase. Here, we analyze 

two key hyperparameters: the prediction threshold for the classification network in 

Stage 1 (denoted as t) and the number of recycling rounds in Stage 2 (denoted as n). In 

the default settings of CryoAtom, t is set to 0.6 and n to 3. We performed tests to 

evaluate the effects of varying these parameters. 

 

As illustrated in Fig. S3a, reducing t and n affects the completeness, with n having a 

stronger impact on the completeness. This suggests that recycling effectively enhances 

the model completeness. Additionally, when lowering the Stage 1 threshold to t = 0.4, 

the backbone precision remains largely unaffected (see Fig. S3b), indicating that 

CryoAtom effectively filters out false positives generated in Stage 1. 

 

We also tested the impact of randomly rotating and translating density maps. We fed 

the transformed density map into CryoAtom. Then, the models output by CryoAtom 

are aligned with the native models using US-align 3 for comparison. The results were 

interesting: appropriate rotation and translation can improve model quality (see Fig. S3), 

although models built from the original and the transformed maps remain broadly 

similar. These data demonstrate the robustness of CryoAtom. 

 

S1.4 Map masking improves backbone precision 
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One factor contributing to CryoAtom’s lower precision is the absence of automatic map 

masking. Map masking is typically used to exclude regions of low resolution or those 

unrelated to the structures of interest (e.g., membrane or solvent). We evaluated the 

impact of map masking on a set of 70 maps from the 177 high-resolution maps, for 

which both the original and masked maps are available from EMDB 4. The average 

backbone precision for structures built by CryoAtom increased from 86.0% (using the 

original map) to 90.7% (using the masked map). While most cases show no significant 

difference between the original and the masked maps (Fig. S5), some examples 

demonstrate improved backbone precision with masked maps. For instance, for the map 

EMD-33306, the backbone precision improved from 25.2% to 97.1% after masking 

(Fig. S5e). However, map masking can sometimes result in incomplete atomic 

structures (Fig. S5f). Nonetheless, our package provides an optional argument to accept 

masked maps for expert users. 

 

S1.5 Evaluation of residue confidence scores 

CryoAtom provides a reliable estimation of model accuracy through a per-residue 

confidence score, similar to the confidence scores available in protein structure 

prediction and ModelAngelo (Box 1). This score is derived from the predicted FAPE 

loss (see Methods). The confidence score ranges from 0 to 100; a higher score 

indicating lower FAPE loss and a more confident prediction. This score is stored in the 

B-factor field of the mmCIF file. We analyzed the correlation between the confidence 

scores of all residues in 177 predicted structures generated by CryoAtom and their 

backbone RMSDs (Fig. S6a). Generally, a higher residue confidence score correlates 

with a lower backbone RMSD. In Fig. S6b-c, we illustrate two examples colored by 

their respective confidence scores. Notably, CryoAtom assigns lower confidence scores 

to loop regions, which tend to be more flexible and exhibit lower resolution in density 

maps. 

 

 

S1.6 Performance on a non-redundant set of maps 

To investigate the impact of redundancy between training and test maps, the 281 test 

maps (from both the high-resolution and the low-resolution test sets) are compared with 

the training maps at a 40% sequence identity threshold and a TM-score threshold of 0.5, 

resulting in a non-redundant set of 54 maps (43 and 11 from the high-resolution and the 

low-resolution test sets, respectively). 
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The performance of CryoAtom is listed in Table S4. Surprisingly, the CryoAtom 

models for the non-redundant maps are more complete than the redundant maps 

(completeness 74% vs. 66%). By dividing these maps into two subsets according to 

their resolutions, we can see that redundancy has less impact on the high-resolution 

maps (completeness 82% vs. 84%). However, the model completeness for the non-

redundant low-resolution maps is even higher than the full test set (41% vs. 37%). This 

is because, before removing redundancy, there were 32 poor models in the low-

resolution dataset, where the completeness of the CryoAtom models were below 20%. 

Only three such models were retained in the non-redundant set, resulting in higher 

completeness. In summary, these results indicate that the key factor impacting 

CryoAtom’s performance is the map resolution rather than the sequence similarity or 

structural similarity to the training data. 

 

Overall, CryoAtom's performance on the non-redundant dataset is generally consistent 

with previous observations (see Fig. 2, 4, and Fig. S8). Except for the backbone 

precision, which is lower than that of ModelAngelo (95.5% vs. 99.2%), CryoAtom 

outperforms ModelAngelo in all other metrics (completeness 73.6% vs. 65.5%, 

backbone RMSD 0.47 Å vs. 0.58 Å, backbone recall 88.7% vs. 81.0%). In terms of 

model quality assessment, although CryoAtom predicted more residues in the more 

challenging low-resolution region, it still achieved competitive scores compared to 

ModelAngelo (MolProbity scores 3.65 vs. 3.75, EMRinger 2.34 vs. 2.35). Finally, we 

compare CryoAtom and ModelAngelo on the intermediate models (model_net) without 

any post-processing. The results (see Fig. S8f) show that CryoAtom has a higher 

backbone recall (95.8% vs. 89.7%) and higher amino acid accuracy (65.2% vs. 50.5%). 

This demonstrates the superiority of the Cryo-Net in constructing atomic positions and 

recognizing amino acid types. 

 

 

S2. Network details 

S2.1 U-Net 

The encoder of the U-Net 5 architecture adopts a bottleneck structure 6, which is the 

same as the convolutional neural network (CNN) module of Cryo-Net. The decoder 

uses the Res2Net architecture 7, 8, as shown in Fig. S11. The use of bottleneck for 

downsampling aims to preserve as much spatial information as possible, while the use 

of Res2Net for upsampling aims to extract as much semantic information as possible. 

The spatial information and semantic information are then combined to predict the 

probability map of Cα atoms. 
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S2.2 U-Net training 

As mentioned in S2.1, the encoder architecture of U-Net is the same as the CNN 

network structure in Cryo-Net. In this case, we employed a form of transfer learning 

technique, where we used the pre-trained CNN network parameters from the Cryo-Net 

as the initial weights for the encoder of U-Net, without increasing the training sample 

size. This is because the Cryo-Net was thoroughly trained on various protein-related 

knowledge, such as structure prediction, amino acid classification, and confidence 

prediction. Therefore, the CNN network from Cryo-Net can extract richer semantic 

information from the cryo-EM density maps, which cannot be solely obtained through 

the task of predicting Cα positions in Stage 1. The encoder architecture of U-Net can 

extract richer information through this pre-training process. 

 

S2.3 Sequence attention and IPA 

The Sequence Attention and IPA modules are only briefly mentioned in the main text. 

In this section, they will be presented in the form of pseudocodes. 

 

In this algorithm, the input si represents the node representation of the i-th node, and 

the input ej represents the ESM-2 9 embedding representation of the j-th amino acid in 

the sequence. The output s ̃i is the updated node representation of the i-th node. 

 



6 
 

 

In this algorithm, the input sj represents the node representation of the j-th node, zij 

represents the edge representation between the j-th node and its i-th neighbor, Tj 

represents the backbone frame of the j-th node, and xj represents the position (i.e., the 

coordinates of the Cα atom) of the j-th node. The output s ̃j is the updated node 

representation of the j-th node. The highlighted text here outlines the main differences 

between the IPA module in this work and the one in AF2 10. The attention used here is 

a local form and includes a 3D rotary position embedding (see below). 

 

S2.4 3D Rotary Position Embedding (3D-RoPE) 

3D-RoPE is used in the node attention and IPA modules of the Cryo-Net. To describe 

this in detail, let’s first introduce the 1D rotary position encoding 11: 
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where q and k represent the query vector and the key vector used in the attention 

mechanism, respectively. They are both d-dimensional vectors. The above formula is 

to introduce the positions m and n of the sequence into the attention mechanism using 

the multiplicative position encoding. We extend this process to 3D space: 
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Here, we assume that the dimensions of the query and key vectors are both multiples 

of three, and (x, y, z) represents the position of each node (i.e., the coordinates of the 

Cα atoms). The 3D position encoding has richer connotations compared to the 1D 

position encoding, as it not only considers the distance information between nodes but 

also the directional information between nodes. Furthermore, this attention mechanism 

can actually be applied along the three coordinate axes: 
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The first one-third of the dimensions in the query and key vectors represent the 

information along the x-axis, the middle one-third represent the information along the 

y-axis, and the last one-third represent the information along the z-axis. From this 

perspective, the 3D-RoPE attention can be seen as the sum of three 1D-RoPE attentions 

in different directions (x, y, z). The 3D-RoPE attention is realized by the inner product 

calculation. In the 3D world, the inner product has a clear physical meaning, such as 

representing the work done: 
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The total work W is the inner product of the force F


 and the displacement s

. From 

another perspective, the total work W can be decomposed into the work done along the 

three coordinate axes. This has an analogy with the 3D-RoPE attention. 

 

If we interpret the 3D-RoPE attention as the interaction between residues, then based 

on the long-term decay property of the 1D-RoPE11, the 3D-RoPE, which can be seen 

as the sum of three 1D-RoPE, will also exhibit long-range decay. In this way, the 3D 

attention between residues will weaken as the distance increases, which nicely captures 

the mechanism of the inter-residue interactions. 
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Finally, 3D-RoPE is applied together with local attention, which ensures good 

extrapolation capabilities. Specifically, the number of tokens processed in each 

attention operation during both the training and testing phases remains consistent (i.e., 

limited to the nearest k residues in space). Even when the spatial dimensions of a tested 

map become very large, the local attention constrains each residue to attend to its 

neighboring residues only. As a result, the relative positional distances in 3D-RoPE are 

in a limited range, even for large maps. 

 

S2.5 Cryo-Net training 

For the convenience of narration, we restate the Eq. 3 from the main text here. The input 

and output of Cryo-Net in each n-th iteration are defined by the following equation: 

               1 1 1 1 1 1, , ( , , , , , )n n n n n n ng T V S T A P E M            

The frame T can be defined as (R, t), where 3 3rR   and 3 1rt   . At the beginning of 

the training,  0t is initialized as the Cα atomic coordinates of the training data after 

adding Gaussian noise 1
0,

3
ie N

 
 
 

 along each dimension, and the rotation matrix  0R

is randomly initialized 1. 

 

During the training process, a Cα atom is randomly selected from each PDB 12 data 

sample, and the 200 nearest residues in the spatial region are cropped. Inspired by 

ModelAngelo, 10% of the residues are randomly replaced with peptide chains of length 

2-5. The purpose of this is to simulate the potential redundancy in the Cα atom 

coordinates output by U-Net, i.e., there may be no corresponding residue with deposited 

structure around the output nodes. In this case, the output M of the network is used to 

determine whether the nodes output by U-Net are redundant or not. 

 

S2.6 CryoAtom_AF3 

CryoAtom_AF3 is an integrated protocol that combines multiple tools (CryoAtom, 

UniDoc 13, AF3 and US-align) to leverage their complementary strengths. First, we use 

the following command to generate an initial model using CryoAtom. 

 cryoatom build -v MAP.mrc -s SEQ.fasta -o init_model  

Then, we predict the protein structure using the AF3 web server based on the sequence. 

We then use the UniDoc 13 command to split the AF3 predicted model into individual 

domains, creating a template library for the subsequent steps. 

 python Run_UniDoc_from_scratch_structure.py -i af3_model.pdb -c chain -o 

output  
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Next, we use the initial model generated by CryoAtom to guide the reassembly of the 

protein structural units from the AF3 predicted model. Specifically, we use a greedy 

algorithm that maximizes the TM-score, and leverage US-align to sequentially align 

the structural units from the template library to the CryoAtom initial model. The 

command to run this process is as follows: 

 cryoatom assemble --td template_dir --c init_model_raw.cif  

Finally, we run the following command to extract the Cα atoms of the reassembled 

model as input for the Cryo-Net refinement. 

 cryoatom build -r cryoatom_assemble.cif -v MAP.mrc -s SEQ.fasta -o 

final_model  

We can also run the above process again using the original (not domain-split) AF3 

predicted model as the template. This means we now have a total of three models 

(including the initial CryoAtom model). We will then select the best model based on 

the CryoAtom confidence scores, choosing the model with the most residues having a 

confidence score > 50. 
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S3. Supplementary figures 
 

 

Fig. S1. Computational efficiency of CryoAtom. (a) Running time for building 177 

maps using CryoAtom and ModelAngelo. (b) Running time for an example protein 

(EMD-29327, PDB ID: 8FNV) under different memory configurations (15GB, 19GB, 

24GB). To eliminate the effects of randomness, each configuration was run six times. 

Error bars indicate median ±1.0 standard deviations. 
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Fig. S2. Analyses of the unique TPs modeled by CryoAtom (31,736 TPs) and 

ModelAngelo (8,980 TPs) on 177 high-resolution maps. The unique TPs of 

CryoAtom and ModelAngelo are mentioned in Fig. 2f. (a) Box plots of the deposited 

Q-score (CryoAtom, n=31736; ModelAngelo, n =8980), in which the red dots represent 

the mean values. The center, lower and upper lines in each box indicate the median, the 

first quartile and the third quartile, respectively. The whiskers extend to the most 

extreme data points that are within 1.5 times the interquartile range (IQR) from the first 

and third quartiles. Data points beyond this range are considered outliers. (b) Bar plots 

of the number of residues in the interface regions, terminal segments and others, for the 

unique TPs in the CryoAtom and ModelAngelo models. (c) Bar plots of the unique TPs 

of CryoAtom and ModelAngelo belonging to different secondary structure categories. 
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Fig. S3. Randomly selected 33 density maps from the sequence non-redundant test 

set to test CryoAtom’s sensitivity to hyperparameters and rotation-translation. 

The parameter t represents the threshold for predictions made by the classification 

network in Stage 1. The parameter n represents the number of recycling rounds in Stage 

2. Random rotation and translation refer to the density maps. CryoAtom will use the 

transformed density map as input and compare the results with the native model. (a-c) 

Bar plots comparing the average completeness, backbone precision, backbone RMSD 

(n=33). The height of each bar graph represents the average value, while the error bars 

are calculated based on the 95% confidence interval. 
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Fig. S4. The performance of CryoAtom on 177 high-resolution maps testing set for 

different biological systems proteins. Bar plots comparing the average completeness. 

The height of each bar graph represents the average value, while the error bars are 

calculated based on the 95% confidence interval. 
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Fig. S5. The impact of map masking. (a) Head-to-head comparison of the model 

backbone precision. (b) Head-to-head comparison of the model completeness. (c)/(d) 

Head-to-head comparison of the model backbone precision/completeness between 

CryoAtom and ModelAngelo by inputting masked maps. (e) Appropriate masking can 

screen out regions unrelated to the deposited structure protein. The gray surface is the 

density map. The green cartoon represents the deposited structure. The purple/blue 

cartoon is the CryoAtom model constructed using the masked/raw map. (f) 

Inappropriate masking can lead to incorrect atomic model. The coloring scheme is the 

same as in (e). 
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Fig. S6. Correlation analysis between CryoAtom confidence score and backbone 

RMSD. (a) Confidence score bin size is 6, and the error bars represent the 99% 

confidence interval of the mean on a per-residue basis. (b-c) CryoAtom models colored 

by confidence score for the maps EMD-28080 (b, PDB ID: 8EFD, reported resolution 

3.8 Å) and EMD-33678 (c, PDB ID: 7Y82, reported resolution 2.83 Å). 
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Fig. S7. Quantitative analyses of the possibility of misjudgment for certain FPs. (a) 

The distribution of confidence scores of the CryoAtom models for the 177 maps. TPs: 

true positives, FPs: false positives. Note that the FPs are possible to be misjudgments, 

as illustrated by the example in Fig. 3. (b) Box plots of the Q-score of FPs (CryoAtom, 

n=97759; ModelAngelo, n =64797), in which the red dots represent the mean values. 

The shape of the violin plot (a) indicates the distribution. The center, lower and upper 

lines in each box (a-b) indicate the median, the first quartile and the third quartile, 

respectively. The whiskers extend to the most extreme data points that are within 1.5 

times the interquartile range (IQR) from the first and third quartiles. Data points beyond 

this range are considered outliers. 
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Fig. S8. Comparison of CryoAtom and ModelAngelo on 54 non-redundant density 
maps. (a) Head-to-head comparison of the model completeness. (b) Bar plots 
comparing the average RMSDs of Cα atoms and backbone atoms. (c) Violin plots of 
the backbone recall/precision (n=54). (d) Box plots of the MolProbity score, in which 
the red dots represent the mean values (n=54). (e) Box plots of EMRinger, in which the 
red dots represent the mean values (n=54). The shape of the violin plot (c) indicates the 
distribution. The center, lower and upper lines in each box (c-e) indicate the median, 
the first quartile and the third quartile, respectively. The whiskers extend to the most 
extreme data points that are within 1.5 times the interquartile range (IQR) from the first 
and third quartiles. Data points beyond this range are considered outliers. (f) Backbone 
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recall and amino acid accuracy of the intermediate models (n=54). Error bars indicate 
±1.0 standard deviations. 
 

 

 

Fig. S9. The curves of loss function under four different configurations. 
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Fig. S10. Modeling evaluation by the CryoAtom and ModelAngelo in low-

resolution regions. Six protein models of the mitochondrial respirasome II2-III2-IV2 
14 are compared and shown with their corresponding densities. Termini are indicated 

for each protein. 
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Fig. S11. Architecture of U-Net. (a) Encoder module and the downsampling module 

are integrated together, and a bottleneck architecture6 is adopted. (b) Decoder module 

adopts the Res2Net architecture 7, 8.  
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Fig. S12. Architectural details of the encoder network. (a) Cryo-Former module. (b) 

node attention layer. (c) edge attention layer. 
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Fig. S13. Architectural details of the decoder network Structure Module. This 

module is similar to the structure module in AF2 10. The difference is that the input here 

includes additional node position information (i.e., the Cα positions). The updated node 

representations are passed through separate MLPs to output T, α, P, M in Eq. 3. 
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Fig. S14. Relationship between node attention and edge attention. A graph (a) can 

be converted into a line graph (b), and vice versa. According to the Whitney graph 

isomorphism theorem, except for a very small number of special cases, the line graph 

uniquely determines the original graph. These two types of graphs have a certain duality. 

The edge attention to the edge ij of the graph on the left is equivalent to the node-

attention to the ij node of the line graph on the right. 
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Fig. S15. Detailed information for the Cryo-Former Module. The original node 

representation and the updated node representation are concatenated and passed 

through a separate MLP to predict the probability vector over the 20 types of amino 

acids for each node (i.e., A in Eq. 3). The original edge representation and the updated 

edge representation are concatenated and passed through another separate MLP to 

predict the edge connectivity (i.e., E in Eq. 3). 
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