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ABSTRACT: Protein structure database search has become
increasingly challenging due to the growing number of
experimental and computational structures. We introduce mTM-
align2, a novel two-step approach for rapid and accurate protein
structure database search. In the first step, protein structures are
first transformed into embeddings using a pretrained inverse
folding model (ESM-IF) and 3D Zernike polynomials. The ESM-
IF embeddings are further optimized through a contrastive learning

Query Structure Protein Structure Database Similar Structures

network, which is trained on ~7 million structure pairs. Structures with similar embeddings are returned on the fly in this step. The
second step employs a rapid structure alignment program to refine top candidates, ensuring high precision and producing high-
quality alignments. Extensive benchmarks reveal that mTM-align2 performs competitively compared to other leading methods,
completing monomeric structure search in seconds with over 90% precision for the top 10 hits. The t-SNE visualization of the
mTM-align2 embeddings for thousands of structures demonstrates that our embeddings are structurally informed, capturing the
global structural features. A web server for mTM-align2 is accessible at https://yanglab.qd.sdu.edu.cn/mTM-align/.

Bl INTRODUCTION

The primary objective of protein structure database search is to
efficiently identify similar structures within a structure
database, such as the Protein Data Bank (PDB)." The most
accurate approach is based on pairwise structure alignment
using tools like TM-a.lign2 and US-align.3 However, performing
database-wide structure alignments is extremely time-consum-
ing, especially when the database is large. For example, TM-
align will require a few weeks to search the PDB database with
a single query.”

With advancements in protein structure prediction, over 200
million structures predicted by AlphaFold® are accessible in the
AlphaFold DB (AFDB). Searching against these structures is a
great challenge. A straightforward approach to accelerate the
structure search is to cluster proteins with similar structures.
Dali’ is one of the most well-recognized methods in this area,
which applies a walking strategy to expand hits in clustered
structures. mTM-align®’ combines both sequence and
structure similarity in the clustering and provides fast pairwise
and multiple structure alignment. TM-search'® applies an
iterative clustering method to reduce the structure comparison
and uses TM-align to perform pairwise structure alignment.
Although these methods could significantly speed up the
search, it is still challenging for them to handle large databases
such as AFDB.

To achieve high-speed search, a few methods were proposed
using shape-based descriptors,"' ~'* which however are less
accurate. 3D-SURFER'* compares the global shape similarity
using the 3D Zernike Moment."> 3D-AF-Surf'' improves the
performance through deep learning and supports structure
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search against AFDB. Nevertheless, like 3D-SURFER, it does
not consider the residue-level similarity. BioZernike'” further
enhances retrieval performance through two key innovations.
First, it incorporates residue-level information into the
moment computation, improving structural representation.
Second, it introduces an “alignment descriptor” to facilitate the
alignment, leading to a higher precision. In addition to the
Zernike moment-based methods, Omakage'’ employs the
incremental distance rank profile to represent proteins shape
and the Gaussian mixture model to align protein structures.
Recent works show that deep neural networks have great
potential in protein structure representation.lé_25 GraSR** and
Progres”’ utilize a graph neural network to acquire the protein
structure embedding, which is further optimized under a
contrastive learning framework. DeepFold'® and FoldExplor-
er’® use the convolutional/graph attention neural network to
encode protein structure, together with sequence information
from protein language model. AlphaFind* utilizes the learned
metric index”’ approach to generate protein structure
embedding, an extremely compressed representation of protein
structure, supporting fast structure search against AFDB.
Foldclass™' acquires protein structure similarity by comparing
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Figure 1. Overall architecture of mTM-align2 for protein structure database search. (a) Algorithm for monomeric structure search. The search
process begins with the conversion of the query structure into a 2D embedding using the pretrained inverse folding model (ESM-IF). This 2D
embedding is then reduced to a 1D embedding through sum pooling. A contrastive learning network, specifically an asymmetric Siamese network
(illustrated in Figure c) is used to optimize the 1D embedding. The similarity between the query and database embeddings is calculated on the fly
with cosine function. Finally, the candidates with high similarity to the query are filtered using the structure alignment program fTM-align. (b)
Algorithm for multimeric structure search (see Figure S8 for more details). It comprises two key modules. The first module utilizes the 3D Zernike
polynomials (ZPM) to convert each structure into a 121-D descriptor vector. The similarity between query and database vectors is also calculated
by cosine function. The second module is based on monomeric structure search. The monomeric hits for each subunit structure are mapped to
their corresponding multimeric structures. The hits from both modules are combined to generate the final set of multimeric structures. (c) Siamese
network with an asymmetric architecture to optimize the ESM-IF embedding. For training, the raw embeddings for two structures are fed into the
network twice by exchanging their order. For inference, the embedding z from the upper branch serves as the final embeddings for structures.

their constituent domains, using the program Merizo-search™"
for domain segmentation. TM-VEC,'® PLMSearch'” and
DHR® are representative methods that infer structure
similarity from amino acid sequence using protein language
models without exact structure comparisons.

Foldseek® is a widely used method for searching various
structure databases. It converts each protein structure into an
artificial amino acid sequence using a Variational Autoencoder
(VAE) network, followed by the use of the MMseqs2”’
program for quick detection of similar sequences. It was
recently extended to search and align multimeric structures,
resulting in the new method Foldseek-Multimer.”® Reseek®’
aligns protein structures using a mega-alphabet of ~85 billion
states for Ca feature vectors and demonstrates superior
sensitivity in homologue detection.

In this study, we present mTM-align2, an enhanced version
of mTM-align tailored for rapid protein structure database
search. We utilize the inverse folding model (ESM-IF*’) and

3D Zernike polynomials'> in conjunction with a contrastive
learning network to improve the speed and accuracy.
Benchmarks demonstrate that mTM-align2 is competitive
with other methods for searching both monomeric and
multimeric structures. The t-SNE visualization demonstrates
that the mTM-align2 embeddings effectively capture the global
features of protein structures, providing valuable insights into
the underlying architectural similarities shared by various
structures.

B RESULTS

Overview of mTM-align2. The major steps of structure
search by mTM-align2 are shown in Figure 1. For monomeric
structure, the inverse folding model ESM-TF*’ is used to
generate a 2D embedding (512 X L, where L is the length of
the structure). This embedding is reduced to a raw embedding
(512-D vector) by row-wise sum pooling. The raw embedding
from the inverse folding space is then transformed into an
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Figure 2. Performance on multimeric structure search. (a) Precision and (b) recall metrics were evaluated for searching 286 structures in the
multimer test set, focusing on the top 10 and 50 hits. (c,d) Present the summed TM-scores for the true positives among the top S0 hits. Each point
in these graphs represents an individual structure from the test set. The radius of each point is proportional to the number of structures retrieved by
US-align. Blue lines along the axes are the kernel density estimation of the data.

updated embedding in the Euclidian space using contrastive
learning network (Siamese,”' see Figure 1c). The similarity
between two structures can be calculated on the fly with the
cosine function. The top 1000 candidate structures are further
filtered and aligned using the fast structure alignment program
fTM-align.”

For multimeric structures, two modules are utilized to
perform the search (Figure 1b). The first module employs the
3D Zernike polynomials (ZPM)'? to identify structures with
similar shapes. Each multimeric structure is represented as a
121-D vector derived from ZPM (refer to Methods). The
similarity between two vectors is calculated using the cosine
function. A maximum of 1000 hits are returned from this
module. The second module is based on the monomeric
structure search procedure. All subunit structures are first
extracted from the multimeric structure. Each subunit is then
processed through the monomeric structure search pipeline.
The returned monomers are then mapped back to their
corresponding multimers, resulting in a maximum of 1000
multimeric hits. Finally, hits from both modules are combined,
resulting in the final set of multimers (see Methods).

mTM-align2 Outperforms Other Methods for Multi-
meric Structure Search. Here, we compare mTM-align2
with other multimeric structure search methods, including
BioZernike,'> and Foldseek-MM-TM.*® Foldseek-MM-TM is a
variant version of Foldseek-MM™® that filters hits using TM-
align. We also assess the performance of two variants of mTM-

align2: ZPM@mTM?2, which utilizes only the ZPM method,
and IFM@mTM?2, which employs only the IFM method. The
ground truth is defined according to US-align, where a hit is
considered a true positive if the TM-score exceeds 0.65, a
threshold employed by Foldseek-MM.

The comparison involves searching a set of 286 multimeric
structures against a nonredundant database of approximately
310,000 multimeric structures. As shown in Figure 2a, mTM-
align2 outperforms Foldseek-MM-TM in terms of precision.
For the top 10 to top S0 hits, mTM-align2 achieves precision
rates ranging from 55.52% to 35.08%, compared to 48.67% to
26.17% for Foldseek-MM-TM (see Figure S1). The low
precision for both methods (<60%) is due to the diversity of
multimer structures. The low precision observed in both
methods can be attributed to the limited number of similar
structures available in the database for most multimeric
structures (refer to the subsequent analysis for Figure 2c). If
we consider only the top five predictions, the average precision
of mTM-align? rises to over 90%. A previous study’~ indicates
that the distribution of multimeric structures in the 3D
Complex database is highly skewed, characterized by a
significant number of structure families containing only a few
members. This finding aligns with our results.

The Zernike polynomials-based methods (ZPM@mTM2
and BioZernike) demonstrate higher precision than mTM-
align2 and Foldseek-MM-TM, at the expense of lower recall.
This is because these approaches focus solely on global
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Figure 3. Performance of monomeric structure search. (a) Precision and (b) recall metrics were assessed on the monomer test data set, which
includes SO0 structures. (c,d) Comparisons of the sum TM-scores for the true positives among the top 100 hits. Each point in (c) represents an
individual structure from the test set. The average sum TM-scores are listed on the top of the box. (d) Distributions of the sum TM-score for
mTM-align2 and Foldseek-TM, where bars and curves are Count and Density, respectively.

similarity, often overlooking local structural details and
returning a limited number of hits. For instance, the average
number of hits returned by ZPM@mTM?2 and BioZernike is
13 and 1S, respectively, leading to lower recall values (see
Figure 2b). Two examples are given to illustrate the limitations
of relying solely on Zernike polynomials-based descriptors. In
the first example, though the two structures (PDB IDs: 1BAR,
210Y, Figure S3a) have similar shape (Zernike score 0.96),
their local structures are very different with a low TM-score of
0.2S. On the contrary, though the two structures (PDB IDs:
8DMG, SDYP, Figure S3b) have different overall shapes
(Zernike score 0.94), they show a high structure similarity (an
average TM-score of 0.75). To balance precision and recall, we
present a precision—recall curve for the methods mTM-align2,
Foldseek-MM-TM, and ZPM@mTM?2, as shown in Figure S2.
At a stricter threshold (>0.98), ZPM@mTM?2 achieves high
precision of approximately 93%, effectively identifying
structures with globally similar shapes. However, as the
threshold decreases (<0.90), the number of false positives
increases, resulting in a significant drop in precision to below
40%. This observation highlights the importance of integrating
Zernike polynomials with complementary descriptors, such as
those derived from the IFM, to capture a broader range of
structural features.

The recall values for all methods are summarized in Figure
2b. It needs to be noted that up to top S0 hits are considered
in this experiment, thus, the average recall rate may be low. To
show the upper limit of the recall rate, we use US-align to
define the ground truth and present its top 10 to S0 hits recall

rate in Figure S1b. Notably, mTM-align2 achieves higher recall
than other methods. For the top 10 hits, mTM-align2 secures a
recall rate of 64.91%, compared to 63.56% for Foldseek-MM-
TM. This difference becomes more pronounced for the top S0
hits, where mTM-align2 achieves a recall of 82.4% versus
77.59% for Foldseek-MM-TM.

We also compare mTM-align2 with BioZernike and
Foldseek-MM-TM based on the sum TM-score (denoted by
sTM-score) of the true positives among the top S0 hits. Out of
the 286 queries, mTM-align2 outperforms BioZernike for 181
queries and performs worse for 14 queries (see Figure 2c).
Notably, the improvement over BioZernike is significant for 61
structures, where the difference in sTM-score is more than 10.
A substantial number of points (151) are located in the lower
left area (sTM-score <10 for mTM-align2 and BioZernike),
indicating that both mTM-align2 and BioZernike return a
limited number of true positives. This arises from the relatively
small number of similar structures available for these targets,
averaging only five according to US-align.

In the comparison with Foldseek-MM-TM based on sTM-
score (see Figure 2d), mTM-align2 performs better for 112
structures and worse for 52 structures. Notably, mTM-align2
significantly outperforms Foldseek-MM-TM for 22 structures
(with sTM-score difference greater than 10). An example is
illustrated in Figure S3c (PDB ID: 8FSF), which is a homo
dimer. In this case, 44 structures with TM-scores >0.65 are
identified by US-align. mTM-align2 successfully found 37 of
them, compared to only 2 by Foldseek-MM-TM. Two
structures that Foldseek-MM-TM failed to recognize (PDB
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Figure 4. Performance on the SCOPe data set and running time analysis. (a—c) Precision—recall curves on the SCOPe40 test set. These
comparisons are made at the fold, superfamily, and family labels, respectively. Hits that share the same fold, superfamily, or family labels as the
query are defined as true positives. (d, e) Average running time per structure: the experiments were conducted using monomer and multimer data
sets, respectively, with a single CPU core for all methods. (f) Average running time for structures of varying lengths: this evaluation focuses on

structures from the monomer data set, also using a single CPU core. (g) Average running time per monomeric structure: this analysis was
performed on the monomer data set with different numbers of CPU cores.

IDs: 4MPN and 4MP7) are shown in the figure. This failure
may be attributed to misalignment of certain alpha helices and
beta sheets (highlighted in the red box), resulting in different
local 3D interaction (3Di) state sequences in Foldseek-MM-
TM.

mTM-align2 is Competitive with Other Methods for
Monomeric Structure Search. We compare mTM-align2
with other methods for monomeric structure search, including
Foldseek,* Foldseek-TM,* fT M-align,2 BioZernike,'”> DALI,’
MMsequ,27 PLMSearch,'” DHR,** GTalign.lg Two variants

of mTM-align2 are also assessed here: mTM-align2 without
fTM-align (mTM2 w/o fTM), and mTM-align2 without the
Siamese network (mTM2 w/o Siam). The comparison is based
on a search of 500 structures against a monomeric structure
database of approximately 730,000 structures. A hit is defined
as a true positive if it shares a TM-score >0.5 with the query
structure, as calculated by TM-align.

The results are summarized in Figure 3. mTM-align2
achieves comparable precision (>95%) to Foldseek-TM (see
Figure 3a). This is anticipated because both methods apply a
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two-step search strategy. The first step is to quickly find
candidate structures that are similar to the query; the second
step filters the top hits using the accurate but slow structure
alignment. When the filtering is removed, both methods
experience reduced precision. For example, the precision of the
top 10 hits drops from 98.71% to 84.06% for mTM-align2,
compared to a reduction from 99.39% to 89.61% for Foldseek.
DALI demonstrates slightly better precision and recall
compared to mTM-align2 noTM and Foldseek, but at the
cost of being orders of magnitude slower.

Interestingly, the sequence alignment-based method
MMseqs2 has similar precision to mTM-align2 and Fold-
seek-TM. This may be because it only returns hits with similar
sequences, which usually implies similar structures. However,
MMsegs2 is not able to detect remote homologies, which share
similar structure but dissimilar sequence to the query, as
evidenced by its low recall values (see Figure 3b). GTalign
achieves the highest precision at a high computational cost as
its alignment-based retrieval process is significantly more time-
consuming than the other methods. We also note that
BioZernike performs poorly in terms of both precision and
recall, consistent with previous observations.'”

As shown in Figure 3a,b, the protein language model-based
methods, PLMSearch and DHR, exhibit lower accuracy
compared to the full versions of mTM-align2 and Foldseek-
TM. Notably, PLMSearch performs comparably to mTM-
align2 and Foldseek when the structure alignment-based
filtering is removed, likely due to its use of PfamScan-based
ﬁltering.17 In contrast, DHR remains less accurate than both
mTM-align2 and Foldseek, even if the structure alignment-
based filtering is removed. This suggests that the structure-
based embeddings utilized in Foldseek (3Di) and mTM-align2
(ESM-IF) are more informative for quantifying structural
similarity than the sequence-based embeddings derived from
protein language models. This conclusion is further supported
by the subsequent ablation analysis.

We note that the recall values for all methods are low. For
instance, the recall value for mTM-align2 is 39.38% even when
considering the top 100 hits. To understand this data, we
calculate the recall values for the structure alignment-based
method fTM-align, which also yields a low recall value of
44.01% for the top 100 hits. The low recall values can be
attributed to the limited number of top hits considered (a
maximum of 100). The average and median number of
structures sharing a TM-score >0.5 for the 500 testing
structures are 585 and 314, respectively, which is significantly
larger than 100 (see Figure S4).

The sTM-scores among the top 100 hits returned by mTM-
align2 and Foldseek-TM are presented in Figure 3c,d. mTM-
align2 has a higher average sTM-score than Foldseek-TM
(51.93 vs 46.91). The distributions in Figure 3d indicate that
mTM-align2 outperforms Foldseek-TM when the sTM-score
is less than 70. Specifically, mTM-align2 performs better than
Foldseek-TM for 216 out of the 319 targets that the sTM-
scores are less than 70. A notable example is shown in Figure
SS, which belongs to the lipocalin-like # barrel domain (PDB
ID: 8DML, chain B). For this example, among the top 100 hits
returned by mTM-align2 and Foldseek-TM, 97 and 20 are true
positives, respectively, yielding respective sTM-scores of 60.12
and 13.43. mTM-align2 successfully identifies 77 true positives
that are missed by Foldseek-TM. The superimposition of two
of these hits against the query structure reveals that the

structures in the common core regions (highlighted in red) are
highly similar, while other outlier regions differ significantly.

mTM-align2 is Competitive with Other Methods for
SCOP Domain Classification. The ground truth for the
comparison above relies on structural similarity defined by
TM-align, which may introduce bias against structure align-
ment methods. To address this issue, we further compare
mTM-align2 with other methods based on the SCOP*
domain classification. The data set comprises 379 structure
domains randomly selected from the SCOPe40> database
(version 2.08), which contains 15,172 domains with less than
40% pairwise sequence identity. Hits that match the fold/
superfamily/family label of the query are regarded as true
positives. A precision—recall curve is plotted by adjusting the
scoring thresholds of each method (e.g., predicted TM-score in
mTM-align2).

Figure 4 summarizes the precision—recall curves for the fold,
superfamily and family classification. Similar to the results in
the previous section, mTM-align2, Foldseek-TM, fTM-align,
and GTalign exhibit comparable performance and are nearly
indistinguishable from one another. However, as previously
mentioned, GTalign and fTM-align are not ideal for large-scale
retrieval tasks due to their reliance on computationally
intensive pairwise structure alignment for identifying similar
structures. In contrast, the alignment-based filtering procedure
is crucial for enhancing the performance of mTM-align2 and
Foldseek-TM. When structure-based filtering is removed, both
mTM-align2 and Foldseek-TM experience a noticeable decline
in performance. The decrease is more pronounced at the fold
level compared to the superfamily and family levels. For
instance, at a recall of 62%, the precision for both mTM-align2
and Foldseek-TM drops from over 80% to about 65% after
removing the filter. In contrast, the corresponding decrease for
superfamily and family classifications is less than 5%. This
difference may be attributed to the high correlation between
the TM-score (used in filtering) and the definition of the
SCOP folds.

The sequence-based PLM methods, PLMSearch and DHR,
are less accurate than structure-based methods. Nevertheless,
both methods demonstrate a common trend: the performance
gap with structure-based methods narrows when the sequence
signal becomes stronger from fold level to family level
Specifically, their accuracy improves progressively from the
fold level to the superfamily and, subsequently, the family level.
We conclude that this behavior is a direct consequence of the
inherent sequence-based nature of these methods.

Running Time Analysis of mTM-align2. Speed for
Database Construction. The running speed of mTM-align2 is
compared with Foldseek in Figure 4d,e. Both mTM-align2 and
Foldseek were executed on a Linux server equipped with four
24-core CPUs, 2 TB memory, and an NVIDIA A100 GPU.
Each method requires a preprocessing step to construct its
respective database. For mTM-align2, this involves clustering
and generating protein embeddings on the A100, which took
approximately 3.5 h for our database of around 730,000
monomers. Constructing the Zernike database for the PDB
multimer data set (approximately 310,000 multimers) took
about 4 h using 20 CPU cores. Foldseek outperforms mTM-
align2 in database preprocessing, requiring about 1 h to
generate 3Di sequences with 20 CPU cores.

Speed for Database Search. We compare the speed of
structure search against the prebuilt databases using a single
CPU core for all programs. The evaluation involved searching

https://doi.org/10.1021/acs.jcim.5c02385
J. Chem. Inf. Model. XXXX, XXX, XXX—XXX


https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.5c02385/suppl_file/ci5c02385_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.5c02385/suppl_file/ci5c02385_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.5c02385/suppl_file/ci5c02385_si_001.pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.5c02385?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

a d2nxpat

d1s9ua1t

d4cr2m3

&

d4cr2j3

S

d1k3ra1

®a 0B QB ®a+p

b 034452

028471

075608

% o
® IPRO27417 = <&
® IPR029058
@ IPRO32675
® IPRO00719
® IPR0O11990

P44492

dtiapa_

Q2R2D

Figure S. Visualization of mTM-align2 embeddings by t-SNE. (a) Results for the 15,172 SCOPe structures, where each point represents a
structure, colored by structural classes defined by SCOPe. (b) Results for 8598 predicted structure models from AFDB. The point colors indicate

different InterPro domains.

286 multimeric structures against approximately 310,000
multimers and 500 monomeric structures against around
730,000 monomers. For monomeric queries, mTM-align2
shows slightly faster speed than Foldseek-TM, while for
multimeric queries, it achieves a two-fold improvement in
computational efficiency compared to Foldseek-MM-TM. This
increased speed can be attributed to two key factors: first,
mTM-align2 estimates similarity using cosine functions, which
is much faster than the k-mer based heuristic approach of
Foldseek; second, it utilizes a preclustered database, allowing
searches against a nonredundant data set and extending results
to other cluster members of the returned hits, similar to the
strategy used in mTM-align.

Speed for Searching Structures with Different Lengths.
We also evaluate mTM-align2’s searching time for monomers
of varying lengths on a single CPU core. The query processing
in mTM-align2 follows a three-stage procedure: generating
embeddings for the query structure, computing cosine
similarity between the query embedding and those in the

database, and structure alignment-based filtering. As shown in
Figure 4f, the average running time demonstrates a positive
correlation with the length of the structures. Generating the
query embedding typically requires a few seconds, while
computing the cosine similarity takes approximately 0.5 s.
Notably, the structure-based filtering accounts for the majority
of the running time, particularly for larger structures, indicating
that the structure alignment-based filtering process is the most
time-consuming component and serves as the primary
determinant of the increased running time for longer
structures.

Acceleration with Parallel Computing. The above experi-
ments were conducted using a single CPU core; however, both
Foldseek-TM and mTM-align2 can be accelerated through
multicore computing. For mTM-align2, this acceleration was
achieved by parallelizing the structure alignment-based filtering
procedure. As shown in Figure 4g, both methods benefit
significantly from parallelization, with Foldseek-TM and
mTM-align2 achieving speedups of 76% and 78%, respectively,
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when the number of CPU cores increases from 1 to 6. Notably,
the two methods exhibit different scalability trends: Foldseek-
TM showed negligible speed improvement beyond 6 CPU
cores, while mTM-align2 continues to improve in speed as
more CPU cores are utilized.

t-SNE Visualization of the mTM-align2 Embedding.
Given the outstanding performance of mTM-align2, we
visualize its embedding using the t-distributed stochastic
neighbor embedding (t-SNE)** with a perplexity of 5. Figure
Sa displays the results for 15,172 structures from SCOPe40.
Each point in the figure represents one structure, colored
according to the structural classes defined by SCOPe. Here, we
focus on the top four largest structural classes: a, 3, a/f, and
a+p. The results indicate that the structures are largely
clustered correctly according to their classes, with several
noteworthy observations outlined below.

mTM-align2 Embeddings Discover Structures that are
Atypical for Their Assigned SCOPe Class. In the left panel of
Figure Sa, two structures (SCOPe IDs: d4cr2m3 and d4cr2;3)
belong to the a/f class (green points) but are clustered
alongside structures from the f class (orange points). Visual
inspection of the protein structures indicates a resemblance to
their neighbors. This is exemplified by the structure shown in
the figure (SCOPe ID: d1k3ral), which shares moderate
structural similarity with d4cr2m3 and d4cr2;3, yielding TM-
scores of 0.46 and 0.51, respectively. We also observe that a
few a+p-class structures (red points) are clustered with a-class
structures (blue points). A notable example is the clustering of
the a+f-class structure d2nxpal with two a-class structures,
d1s9ual and dliapa_ (Figure Sa, top). While d2nxpal is
classified as a+f due to two minor f-sheets, its secondary
structure is dominated by a-helices, making it structurally
analogous to its a-class neighbors. These examples indicate
that our embeddings could discover structures that are atypical
for their assigned SCOPe class.

mTM-align2 Embedding Reveals Structural Fold. Addi-
tionally, we note the emergence of distinct subclusters within a
single cluster. Two such subclusters from the f class (orange
points) and the a class (blue points) are highlighted in the
right panel of Figure Sa. They appear within the cluster of a/f
class structures (green points). Upon inspecting the structures
in these two subclusters, we present two representative
examples (d6y77al and d3k9va). Both structures contain «
helices and f sheets, indicating shared structural similarities
with other a/f-class structures in the cluster. Furthermore,
these two subclusters correspond to two SCOPe folds, a.104
and b.69, respectively, which have well-defined boundaries
with other structures. This suggests that mTM-align2
embedding has the potential to cluster structures from a
‘coarse-grained’ class level to a ‘fine-grained’ fold level.

mTM-align2 Embeddings for Predicted Structures in
AlphaFold DB. We further analyze the predicted structures
from AFDB® using the mTM-align2 embeddings. For
illustration, we took 8598 high-confidence structures with
pLDDT > 80 from five InterPro’® domains. Figure Sb
demonstrates that most structures cluster well, with clear
boundaries between different InterPro domains: IPR029058
(Alpha/Beta hydrolase, green points), IPR027417 (P-loop
containing nucleoside triphosphate hydrolase, orange points),
IPR000719 (Protein kinase, purple points), IPR011990
(Leucine-rich repeat domain, red points), and IPR011990
(Tetratricopeptide-like helical domain, brown points). Each

InterPro domain is represented by an example structure in the
figure, illustrating the structural differences among them.

Notably, the first three InterPro domains (green, orange,
and purple points) are closely clustered, likely due to their
similar structural features (containing both @ helices and f
sheets) and functions (enzymes).

In contrast, the other two domains (red and brown points)
are well-separated, reflecting their distinct structural character-
istics: the Leucine-rich repeat domain (red points) is
characterized by a repeated a/f horseshoe fold, while the
Tetratricopeptide-like helical domain (brown points) consists
of a multihelical fold made up of two curved layers of a-helices.
These results further confirm that the mTM-align2 embed-
dings are structurally informed.

However, we observe the formation of some subclusters,
four of which are highlighted in circles. A representative
structure is provided for each subcluster. A common
characteristic of these structures is that they are significantly
larger than other structures within their respective domains.
For instance, the structure for Q4WZAS8 (shown on the right
side of Figure Sb) contains over 2000 amino acids,
approximately ten times larger than the example structure
075608 from the same domain. In fact, Q4WZAS8 is a
multidomain protein. According to the InterPro annotation,
this protein contains 21 InterPro domains, including the
domain IPR029058 associated with structure O75608.
Similarly, the purple structure (Q2R2DS) shown at the
bottom of Figure Sb also contains multiple domains, including
IPR000719 (purple) and IPR032675 (red). This structure is
primarily characterized by the repeated @/f horseshoe fold,
leading to its assignment in the cluster of IPR032675 (red)
rather than IPR0O00719 (purple). The clustering is further
supported by the structural similarity (TM-score >0.5)
between the two representative structures (Q2R2DS and
Q70CT4). These data indicate that the mTM-align2
embeddings effectively capture the global features of protein
structures.

Ablation Study. For monomeric structures, mTM-align2
makes use of contrastive learning (Siamese network) and
structure alignment-based filter (fTM-align) to enhance the
precision. We conducted an ablation study to assess the
improvements introduced by these components. On the
monomer test data set, the precision of mTM-align2 without
fTM-align drops from 95.64% to 70.11% (Figure 3a, top 100
hits), indicating that the structure-based filter is essential. In
addition, the precision significantly declines from 70.11% to
43.90% when the Siamese network is removed. These data
suggest the critical role of the Siamese network in enhancing
the precision of mTM-align2.

For multimeric structures, the monomeric structure search
module (IFM) is combined with the ZPM-based module to
enhance the search results (Figure 1b). We evaluated the
improvement gained from this combination on the multimer
test data set. When mapping multimeric structures using the
top hits from IFM, an average of 32.86 hits are obtained. In
contrast, when using the ZPM-based search for multimeric
structures alone, an average of 15.6 hits are retrieved. The
Venn diagram in Figure S6 demonstrates that the two modules
are complementary to each other. Both modules have overlap
for 12.39 hits and their unique hits (20.47 and 3.21 for IFM
and ZPM, respectively). Therefore, combining hits from both
modules results in the most accurate results in mTM-align2.
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Figure 6. Comparison of zero-shot structure search performance of various Protein Language Models (PLMs) on the monomer data set. (a,b)
Precision and recall. Embeddings were generated by average pooling the residue-level features from each pretrained model, and cosine similarity

was employed to rank the search results.

To validate the effectiveness of ESM-IF as a structure
encoder, we conducted a comparative analysis against several
other pretrained sequence-based PLMs: ESM-1b,*® ESM-2,”
and ProtT5.”® We evaluated each model’s zero-shot perform-
ance on a structure retrieval task using our monomer test data
set. For this evaluation, global protein representations were
derived by applying average pooling to the raw residue features
from each PLM. Structure retrieval was then performed using
these global representations based on cosine similarity. The
results, illustrated in Figure 6, clearly show that ESM-IF
outperforms the other models in both precision and recall.
This superior performance suggests that the features generated
by ESM-IF effectively capture the structural properties.

B CONCLUSION

Protein structure database search has become increasingly
important and challenging. Building on advancements in
protein engineering and deep learning, we developed mTM-
align2, a rapid and accurate approach for protein structure
database search and clustering. Unlike other methods, mTM-
align2 effectively handles both monomers and multimers
within a single framework. Protein structures are converted
into embeddings using the inverse folding model and the 3D
Zernike polynomials. The embeddings are further optimized
through a contrastive learning network trained on ~7 million
structure pairs. The embedding significantly accelerates search
speed; while the network enhances the accuracy. Compre-
hensive benchmarks demonstrate the superior performance of
mTM-align2 for both monomers and multimers. mTM-align2
typically completes monomeric structure searches against
existing databases within seconds, achieving over 90%
precision for the top 10 hits.

The t-SNE visualization of the mTM-align2 embeddings for
thousands of protein structures indicates that the mTM-align2
embeddings effectively capture the global features of protein
structures, leading to insightful observations, such as
identification of similar structures across different classes and
recognition of blurred class definitions. These findings
highlight the utility of mTM-align2 in advancing our
understanding of protein structures and their classifications
and functions.

Despite its strengths, we admit certain limitations of mTM-
align2. The sum pooling transform of the ESM-IF embedding
can result in the loss of structural details, bringing false positive

hits. To solve this problem, we apply structure alignment to the
top hits to filter out false positives. However, this filtering slows
down the search. Potential solution could involve directly
comparing the original ESM-IF embeddings with contrastive
learning without pooling. We plan to explore this enhancement
in our future work.

B METHODS

Training and Test Data Sets. Monomer Test Data Set.
We obtained a data set of ~ 730,000 monomers from Q-
BioLiP* (version 2023.01.11) and 15,172 domains from the
SCOPe40 database (version 2.08). These structures, compris-
ing both monomers and domains, were clustered using CD-
HIT™ at a 40% sequence identity threshold to eliminate
redundancy, resulting in 70,270 distinct clusters. We randomly
selected 500 monomers from 500 clusters as the monomer test
set. The test set for the SCOP domain data set was constructed
by selecting each domain structures in the same cluster,
resulting in 379 domains (some of the selected clusters do not
contain any domain structures).

Multimer Test Data Set. Given that our multimeric
structure search algorithm relies on monomer-based structural
searches to retrieve constituent subunits, it is imperative to
prevent data leakage between the training and testing data sets.
To achieve this, the multimer test data set was constructed
based on the 500 monomer structures by mapping them to
their corresponding multimers. From this mapping, 286
multimers were obtained, as other monomers do not form
multimeric structures.

Training Set. To train the Siamese neural network, we
constructed >7 million pairs of protein structures as follows.
First, we generated random protein pairs from the non-
redundant set of monomeric structures (testing structures were
removed), resulting in ~S million pairs of structures. Most of
them are negative training samples with a TM-score less than
0.5. We then use fTM-align to search for protein pairs with
high structure similarity. This step yields a high-similarity set of
~2 million pairs of structures, each with a TM-score greater
than 0.5.

Algorithm for Monomeric Structure Search. The
monomeric structure search involves three key steps (see
Figure 1):

Step 1. Encode a structure using the inverse folding model.
The pretrained protein language model ESM-IF*" is used to
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transform a monomeric structure into a raw embedding (L X
512). Note that only the encoder from ESM-IF is used. The
embedding of the structure is reduced to a raw embedding
(512-D vector) by row-wise sum pooling,

Step 2. Optimize the structure embedding with contrastive
learning. The raw embedding from the inverse folding space is
then transformed into an updated embedding in the Euclidean
space using contrastive learning network (Siamese,31 Figure 1c,
introduced below). As shown in Figure lc, the Siamese
network consists of two branches. For inference, the raw
embedding from ESM-IF is fed into the upper branch,
producing the updated embedding z.

Step 3. Search and filter similar structures. The similarity
between two embeddings z, and z, is defined as the cosine of
the angle (0) between z, and z,, which is named as IF-score

Z1'Zy
[EAIRIER (1)

The IF-score between the query embedding and the
precalculated embeddings of all structures in the database
can be calculated on the fly. Structures with IF-score greater
than 0.4 are returned. To improve the precision and generate
pairwise alignment, we apply the fast protein structure
alignment program fTM-align to filter the structures, removing
those with a TM-score below 0.4. The retained hits are then
ranked and mapped to their respective clusters to expand the
search to the whole database. Details for the monomer
structure search algorithm can be found in the supplementary
algorithm Al

Contrastive Learning Using the Siamese Neural
Network. We use contrastive learning, specifically, the
Siamese neural network’' with asymmetric structure to
optimize the relationship between vector similarity and
structure similarity. The network is shown in Figure lc.
During training, as the network is asymmetric, we input the
raw features twice by swapping their order. For a structure pair
(x1,%,), in the first run, we feed the embeddings of x; and «, to
the upper and lower branch, respectively. The order of x, and
x, is swapped in the second run. As a result, we obtain two
different vectors for each structure, that is z(x;),p(x,) for x,,
and z(x,), p(x,) for x,. Then the average cosine similarity (i.e.,
average of cos(z(x,),p(x,)) and cos(z(x,),p(x,))) is used to
estimate the structure similarity (i.e., TM-score) of x; and x,.
We show the details of the training process in the
supplementary algorithm A2.

Loss Function. To minimize the differences between our
predicted score and the TM-score, the MSE loss is used.

n
loss = % Z (Jf - 51;)2
i=1

IF-score(z,, z,) = cos(f) =

)
where y; is the predicted TM-score, ' is the real TM-score, n is

the size of the training batch.

Model Training. The training and test are conducted on a
Linux server equipped with 4 Intel Xeon Platinum 8260 CPU
96 cores (2.40 GHz) and 2TB memory. The GPU used for the
training was a Nvidia A100 with 40GB of high-bandwidth
memory. To achieve better performance, we conduct label-
optimization according to the significance of TM-score.”" For
dissimilar protein pairs (TM-score <0.3), we subtract 0.2 from
their TM-score, further separating them in the feature vector
space; if the TM-score is above 0.7, we add 0.2 to their TM-
score, with a maximum value of 1. This adjustment in the label

assignment significantly enhances the retrieval accuracy
(Figure S7).

The initial learning rate is 0.001, which is scheduled by a
cosine function as the training going on. We utilized a batch
size of 1024. Stochastic gradient descent (SGD) was applied to
optimize the parameter. The network converged after 100
epochs in about 1.5 h.

Algorithm for Multimeric Structure Search. The
multimeric structure search consists of two modules. The
first module is based on 3D Zernike polynomials (ZPM,
introduced below in detail). The second module is based on
the monomeric structure search introduced above (denoted by
IFM). The hits from both modules are combined to yield the
final set of similar multimers. More details are available in the
supplementary algorithm A3.

Descriptors from 3D Zernike Polynomials. We use the 3D
Zernike moments™ to describe the shape of multimeric
structures, with implementation by the package BioZernike."”
The first step involves representing the shape in 3D space
through a process called voxelization. For a given protein, a 3D
grid of size 32 X 32 X 32 is created to convert its structure
coordinates into a volumetric representation. For each amino
acid, the Ca atom is used as the representative atom. Then,
Gaussian density is constructed for each Ca atom, where the
weight corresponds to the amino acid’s molecular weight, and
the size reflects the spherically averaged size of the amino acid.
Then the Gaussian densities are placed into the volume, which
is subsequently scaled to fit within a unit sphere. Finally, a
coordinate system is fixed with the origin as the center of the
grid and the axes aligned with the grid axes.

After establishing the coordinate system, any given protein
can be represented as a volumetric function f(x). The 3D
Zernike polynomials ZJj(x) are used as orthonormal basis
functions, allowing the volumetric function f(x) to be
decomposed accordingly.

HOEDIDIPI A .
n I m

where x is the vector representing the coordinates of grid
points. The coefficients of the basis functions €2} are defined as
the 3D Zernike moments, which will be transformed into the
shape descriptors after normalization. The 3D Zernike
polynomials Z"(x) is defined as"’

k v
ZM(x) = c{”f’”z qulz (2)
=0

Tl )z e ()
[(I-m)/2] _ “
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(4)

where i is the imaginary unit, n is the predefined maximum
polynomial order, I € [0,n], m € [—1I], n — | is even number,

and k = "2_1. The term " and gy are defined as follows

m_ J@IL+ 1)1+ m)!(1 — m)!
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thus, the 3D Zernike moments are defined based on the
volume function f(x) as
m 3

= [ S@Z) & .

where Z}(x) is the conjugate of ZJj(x).

Note that the moment £/ is not invariant under rotation.
To obtain rotation invariant shape descriptors, the 3D Zernike
descriptors D,; are defined as the norms of €, that is

D=1, Q1 QL (8)

nl’ nl

Moments up to order 20 (n < 20) are utilized in our
experiments and the resulting moment is transformed into a
121-D descriptor. This vector describes the overall shape of the
structure. The similarity (denoted by ZP-score) between two
descriptor vectors is calculated using the cosine function,
similar to eq 1. The structures in the database are ranked by
ZP-score and a maximum of 1000 multimeric structures are
returned by ZPM.

Identify Multimeric Structures Based on Monomeric
Structure Search. We make use of the monomeric structure
search module to identify multimeric structure (see Figure S8
for more details). The top 6 longest subunit structures are first
extracted from the query structure. Each subunit structure is
then fed into the monomeric structure search pipeline. The
returned monomers are then mapped to their respective
multimers, resulting in a maximum of 1000 multimeric hits.
The IF-score for each subunit in the mapped multimers is
taken from the previous set of similar subunits, which is set to
0 if not existed in the set. The IF-score for each mapped
multimer is then calculated as the mean IF-scores over all
subunits.

Strategy for Combining Multimeric Structure Hits from
ZPM and IFM. The candidate multimeric structures from ZPM
and IFM are combined to generate the final set of multimeric
structures based on a consensus score called Q-score (see
Figure S8 for more details).

1

Q-score = 5 (a X IE-score + 8 X ZP-score)

)

where the weights a and f are empirically set to 1 and 0.3,
respectively. Multimeric structures are ranked based on the Q-
score and up to 1000 top hits are returned.

Controlled Baselines. We compare mTM-align2 with
several existing methods, including fTM-align,” a fast
implementation of TM-align; GTalign, 7 a spatial index-driven
protein structure alignment method; PLMSearch,'”” a PLM-
based method to perform homology detection. DHR,”” a
PLM-based method based on dual-encoder architecture,
DALL’ a popular structure alignment-based method using
distance matrix; BioZernike,'* an alignment-free method that
is officially used by PDB; Foldseek,® the state-of-the-art
method for efficient protein structure database search;

MMseqs2,”” an efficient method for fast sequence database
search. As the model weight for BioZernike is not publicly
available, we manually submitted the query structures to its
web server (http://shape.rcsb.org/) to conduct the structure
search. For all other methods, we downloaded the packages
and ran them locally with default settings.

B EVALUATION METRICS

Similar to previous studies,” the average precision and recall
are used to evaluate the performance

1 2‘1: TP(m,)

precision (n) = —
q i=1 m; (10)

1 < TP(m,)
Z_

recall (n) = —
9. B (11)

where ¢ is the total number of structures in a test set, n is the
number of top hits to be assessed, m; = min(N,n) and Njis the
number of returned hits, P, is the number of hits that have TM-
score >0.5 with the query. A structure is defined as a true
positive (TP) if it appears in the top n hits and its TM-score
with the query exceeds the specific thresholds. For
monomeric/multimeric structures, the threshold is defined as
0.5/0.65. In this study, the TM-score between two structures is
defined as the average TM-score, that is, the average of the two
TM-scores normalized by the lengths of two structures. Note
that TM-align/US-align is used to calculate the TM-score
between two monomeric/multimeric structures.
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Data Availability Statement

The data sets supporting this research are all open-source.
Monomer and multimer data are available from the Protein
Data Bank (https://www.rcsb.org), with domain data sourced
from SCOP (https://scop.berkeley.edu/astral/pdbstyle/ver=2.
08). AlphaFold 2 predicted structures were downloaded from
the AlphaFold Protein Structure Database (https://alphafold.
ebi.ac.uk/download). All test data sets generated and analyzed
for this study are available at Zenodo: https://zenodo.org/
records/15818043. The web server is available at: https://
yanglab.qd.sdu.edu.cn/mTM-align/.
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