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ABSTRACT
Recognizing the oligomeric state of proteins is crucial for understanding the structure and function of proteins. In the CASP16 
experiment, a two-stage prediction is proposed to challenge structure predictors, in which the oligomeric state is unknown at 
the first stage. The correct prediction of the oligomeric state plays a vital role in the subsequent step of structure prediction. To 
this end, we introduce POST, a new approach to the prediction of oligomeric state for homo-oligomers using multiple templates, 
specifically focusing on four states: monomer, dimer, trimer, and tetramer. POST employs three different algorithms, including 
dynamic programming, protein language model, and hidden Markov model, to detect homologous templates from an in-house 
template library (i.e., Q-BioLiP). These algorithms lead to three individual methods for oligomeric state prediction. Assessment 
on two independent datasets and 107 targets from CASP14 and CASP15 suggests that the templates detected by these methods 
are largely complementary. A combination of the templates from all individual methods results in the most accurate prediction. 
POST outperforms other sequence-based methods in predicting specific oligomeric states of proteins and distinguishing multim-
ers from monomers, although it is inferior to other structure-based methods. Overall, POST is anticipated to be helpful in protein 
structure prediction and protein design.

1   |   Introduction

In the protein universe, proteins perform biological functions 
through biomolecular interactions [1]. For example, to transport 
oxygen in red blood cells, the protein hemoglobin works in the 
form of the oligomeric state of four interacting subunits. It is a 
long-standing challenge to uncover the interactions between 
biomolecules. We propose a simplified version of this problem, 
i.e., can we decipher the oligomeric state of proteins? In fact, the 
identification of protein oligomeric states plays a crucial role in 
protein structure prediction [2], protein design [3], basic research 
on evolutionary mechanisms, as well as drug discovery and de-
sign [4–8]. Recently, an atlas of protein homo-oligomerization 

was built based on structure modeling with AlphaFold2 [9, 10]. 
In the CASP16 experiment, a two-stage prediction is proposed 
to challenge structure predictors, in which the oligomeric state 
is unknown at the first stage. The correct prediction of the oligo-
meric state plays a vital role in the subsequent step of structure 
prediction.

Many methods have been developed to predict the homo-
oligomeric complex structures. These include the frag-
ment assembly approach Rosetta [11], the comparative 
modeling approach ProtCHOIR [12], the docking-based ap-
proaches GalaxyHomomer [13] and HSYMDOCK [14], the deep 
learning-based approach AlphaFold-Multimer [15], and so on. 
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In general, knowing the oligomeric state (e.g., dimer or trimer) 
is a prerequisite for these methods. For example, the oligomeric 
state is inferred from templates detected by HHsearch [16] in 
GalaxyHomomer.

In this work, we aim to improve the oligomeric state predic-
tion using multiple templates from complementary methods. 
This has been proven very effective in the monomer structure 
prediction pipeline I-TASSER [17], i.e., the usage of multiple 
templates detected by complementary threading methods is 
essential to improve the structure modeling for hard targets. 
We name the developed method POST (Protein Oligomeric 
STate prediction), which is specifically designed to predict 
four oligomeric states (monomer, homo-dimer, homo-trimer, 
and homo-tetramer) for a given protein. Benchmark tests 
on two independent datasets and the CASP14 and CASP15-
derived targets show that POST is promising for protein oligo-
meric state prediction.

2   |   Materials and Methods

2.1   |   Template Library and Benchmark Datasets

In this work, we aim to predict the oligomeric state for homo-
oligomers consisting of up to four subunits using homologous 
templates. To this end, we first collected a template library (de-
noted by OSDB) from the quaternary structures in Q-BioLiP (be-
fore 2022.07.08), a recently developed resource for quaternary 
structure-based protein-ligand interactions [18] by our group. 

There are ~82 k homo-oligomers in the template library. For 
these structures, 54.7%, 32.2%, 4.3%, and 8.9% are monomers, 
dimers, trimers, and tetramers, respectively. To speed up tem-
plate searching, a non-redundant version (denoted by OSDB95, 
containing ~50 k homo-oligomers) at 95% sequence identity is 
built using CD-HIT [19].

From the non-redundant library, we collected 300 and 1146 non-
redundant proteins as the training set and test set, respectively. 
The test set is denoted by TS1146 for convenience. All proteins in 
the training set have a sequence identity of less than 20% to the 
proteins in the test set. The distributions of the oligomeric states 
in the training and test sets, shown in Figure S1A, are consis-
tent with the template library. In benchmark tests, all templates 
sharing ≥ 30% sequence identity with the query are excluded.

Further, we collected 58 and 49 targets from the CASP14 and 
CASP15 experiments to test our method. The physiological di-
mers and monomers established by Schweke et al. [20] are used 
as an additional test set.

2.2   |   POST Algorithm

The algorithm developed in this work is named POST, which 
consists of three component methods, POST-DP, POST-PL, and 
POST-HH. The major differences between these three methods 
are template detection (Figure 1). The input to POST is the amino 
acid sequence of a protein. This sequence is fed into POST-DP, 
POST-PL, and POST-HH simultaneously to obtain homologous 

FIGURE 1    |    Flowchart of POST for protein oligomeric state prediction. POST-DP, POST-PL, and POST-HH are three individual methods with 
different template detection algorithms, i.e., dynamic programming, protein language model, and hidden Markov model, respectively. OSDB95 and 
PDB70 are non-redundant template libraries at 95% and 70% sequence identity.
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templates with known oligomeric states. These templates can be 
used either separately or in combination to infer the oligomeric 
state of the protein.

2.2.1   |   Template Recognition by Dynamic 
Programming

To detect homologous templates, we first design a dynamic 
programming-based algorithm to align the query and the 
template sequences. Global alignment is performed using the 
Needleman-Wunsch algorithm [21], in which the key is the de-
sign of the scoring function. The scoring function for aligning 
the i-th residue in the query sequence and the j-th residue in the 
template sequence is defined as follows:

where q and t represent the query and the template, respectively. 
The first term is the profile-profile alignment of the query and 
the template. To obtain the profiles of the query and the template, 
HHblits [22] is used to search the query and the template sequences 
against the UniClust30-2018-08 database to construct multiple se-
quence alignments (MSAs). A position-specific frequency matrix 
(F) is calculated from the query MSA. Meanwhile, we calculate 
the position-specific score matrices (P) for all templates. �

(

s
q
i
, st
j

)

 
is an indicator function for secondary structure matching. si

q is 
the three-state (Helix, Sheet, and Coil) secondary structure pre-
dicted by PSIPRED [23] for the i-th residue in the query. sj

t is the 
three-state secondary structure for the j-th residue in the template 
assigned by STRIDE [24]. B
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q
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 is the value of the correspond-
ing element in the BLOSUM62 matrix, where Ri

q and Rj
t repre-

sent the i-th residue in the query and j-th residue in the template, 
respectively. M

(

R
q
i
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j

)

 is the hydrophobic scoring matrix taken 
from Silva [25]. The coefficients for each term are optimized on 
the training set.

All templates are ranked based on the normalized alignment 
score, i.e., Rscore/Lq, where Rscore is the raw alignment score 
and Lq is the length of the query sequence. Then, the signif-
icance of a template is evaluated by the Z-score, obtained by 
subtracting the mean, followed by the division of the standard 
deviation over all templates  [26]. Templates with a Z-score 
higher than 1.5 or the top 10 templates are used to infer the 
oligomeric state based on the maximum score and the number 
of putative templates (see Supporting Information Text 1.2). 
We denote this method by POST-DP.

2.2.2   |   Template Recognition by Protein 
Language Model

Besides the dynamic programming-based template recognition, 
we use another pre-trained protein language model-based algo-
rithm (i.e., PLMSearch) to detect templates [27]. The protein lan-
guage model ESM-1b [28] is employed in PLMSearch to encode 
a protein sequence into a vector of fixed size. A deep neural net-
work is then trained to predict the similarity between any pair 
of proteins using the embedding vectors. Benchmark tests show 

that PLMSearch is able to detect remote homology, with accu-
racy comparable to structure-based template detection, while at 
much higher speed.

To use PLMSearch, a standalone version is installed locally on 
our cluster. All templates are fed into the protein language model 
to generate deep sequence embeddings. Each query sequence 
is converted into an embedding using the same procedure. A 
one-against-all comparison is then conducted by PLMSearch 
to detect homologous templates. The top 10 templates with the 
highest similarity are selected as putative templates. The way 
to infer the oligomeric state from the templates is the same as 
in POST-DP (Supporting Information Text 1.2). We denote this 
method by POST-PL.

2.2.3   |   Template Recognition by Hidden Markov Model

In protein structure prediction, HHsearch is a popular thread-
ing algorithm using hidden Markov model comparisons [16]. 
Here, we employ HHsearch to conduct a two-step search for 
homologous templates. In the first step, HHsearch is run 
against the PDB70 database with default parameters. A tem-
plate is selected if it meets the following criteria: confidence 
> 0.7 and e-value < 0.001. Next, we utilize MMseqs2 [29] to 
cluster the sequences in our library (OSDB95) and the PDB70 
database at 90% sequence identity. The templates (from our li-
brary) that belong to the same cluster as those identified in the 
first step are considered potential templates. The same proce-
dure in POST-DP is applied to infer the oligomeric state from 
the selected templates (Supporting Information Text 1.2). We 
denote this method by POST-HH.

2.2.4   |   Oligomeric State Prediction by POST

The oligomeric state of the query protein is inferred from the 
selected templates. Since the oligomeric states of the templates 
may be different, the scoring function for assigning state k is 
defined by the following equation:

where sXX
k is the maximum score of the templates with oligomeric 

state k from POST-XX, nXX
k is the total number of the templates 

with oligomeric state k from POST-XX. N is the total number of 
used templates. The coefficients are obtained through tuning on 
the training set (please refer to Supporting Information Text 1.1). 
The probability for each state is then obtained by normalizing the 
scores across all states. Finally, a state is predicted if its probability 
is higher than 0.2. To measure the confidence of a prediction, we 
design a state-dependent confidence score:

where nk is the sum of nXX
k, and other terms in the above equa-

tion have the same meaning as Equation (2). The weights of the 
confidence score are determined to maximize the correlation 
between the confidence score and the F1-score on the training 
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set. In the final prediction, the maximum score of all predicted 
states (probability > 0.2) is used as the confidence score of this 
prediction. Figure 2D shows that there is an obvious correlation 
between the confidence score and F1-score on the TS1146 data-
set. In general, predictions with a confidence score above 0.86 
will likely have an average F1-score over 0.85.

2.3   |   Metrics for Performance Assessment

The prediction results are mainly evaluated by two types of met-
rics; one is sample-based metrics, and the other is label-based 
metrics [30]. The sample-based metrics include the F1-score, 
accuracy, precision, and recall. Label-based metrics include the 
Matthews correlation coefficient (MCC), precision, recall, and 
F1-score. The detailed definitions of these metrics are available 
in Supporting Information Text 2.

3   |   Results

3.1   |   The Performance of POST

We first assess the overall performance of the three individ-
ual methods developed in this work, POST-HH, POST-PL, and 
POST-DP, which are based on template detection with hidden 
Markov model, protein language model, and dynamic program-
ming, respectively.

We ran the above methods on an independent test set of 1146 
non-redundant proteins, and the results are summarized in 
Figure 2. The method POST-HH, with template detection algo-
rithm HHsearch by hidden Markov model alignment, achieves 
the poorest performance across all measures (e.g., the average 
F1-score is 0.609; see Figure 2A). On the contrary, the method 
POST-PL, which employs a protein language model and a deep 
neural network for template detection, significantly outperforms 
POST-HH (e.g., F1-score increases to 0.679). With our profile-
profile alignment-based template detection and optimization, 
POST-DP further improves the F1-score over both POST-HH and 
POST-PL, with p-values less than 0.0001 in the Mann–Whitney 
U-test (Table S1). As the output of each method is the probability 
distribution across four specific oligomeric states, we are able to 
draw the receiver operating characteristic (ROC) curve and cal-
culate the AUC score for each method, as shown in Figure 2B. 
The results show that the AUC scores of POST-DP and POST-PL 
are slightly higher than those of POST-HH.

Due to the complementarity of the templates detected by the 
three individual methods, POST-HH, POST-PL, and POST-DP, 
we then seek to combine the templates from the three methods 
to make a more accurate prediction. Using the combined pool 
of templates, POST can improve prediction performance in 
terms of all metrics, for example, achieving an F1-score of 0.730, 
2.67%–19.87% higher than its component methods (Figure 2A). 
These differences are statistically significant, with p-values of 

FIGURE 2    |    Comparative assessment of POST and its component methods on the TS1146 dataset. (A) The overall F1-score, Accuracy, Precision 
and Recall values. (B) The ROC curves and AUC values. (C) The F1-scores for four oligomeric states. (D) The relationship between the confidence 
score cutoff and the F1-score for POST. Each blue point represents the average F1-score of predictions with a confidence score higher than the corre-
sponding threshold. The red line is the fitted line, and R2 is the square of Pearson's correlation coefficient.
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less than 0.0001 (Table S1). The ROC curves and AUC scores in 
Figure 2B also indicate that POST (with AUC 0.78) does improve 
the prediction over other methods.

An example is shown in Figure 3 to illustrate the successful pre-
diction by POST compared to its component methods. We first 
ran POST-HH, POST-PL, and POST-DP independently to iden-
tify homologous templates. They returned 48, 10, and 38 tem-
plates, respectively (Figure 3A). Both POST-HH and POST-DP 

predicted the oligomeric states as monomer and tetramer, while 
POST-PL predicted dimer and tetramer (Figure  3B). When 
merging these templates, we obtained 96 templates, which cov-
ered all four considered oligomeric states. Among them, the 
templates with the tetrameric state ranked higher in terms of 
their scores, as shown in Figure 3C. After scoring and proba-
bility distribution, only the tetramer state with a probability of 
0.97 is selected as the predicted state (Figure 3B) by POST. This 
prediction is consistent with the experimental state (Figure 3D). 

FIGURE 3    |    An illustrative example of POST's prediction of the protein oligomeric state for the protein TAX-4_R421W (PDB ID: 7N17). (A) The 
Venn diagram of homologous templates derived from POST-DP, POST-PL, and POST-HH. (B) The predicted oligomeric states. The dashed lines rep-
resent probability thresholds of 0.2, 0.15, 0.15, and 0.2, respectively. (C) Oligomeric state distributions (1: Monomer; 2: Dimer; 3: Trimer; 4: Tetramer) 
for all templates (shown as a pie chart) and for the top 30 templates selected from each method ranked by the respective scores (shown as bar charts). 
(D) The native structure of 7N17 is a homo-tetramer (cartoons colored by chains).
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This example demonstrates that the combination of templates 
identified by these component methods effectively eliminates 
incorrect states, leading to more accurate predictions.

3.2   |   Performance on Individual Oligomeric States

We further assess the performance of POST and its component 
methods on individual oligomeric states, which is measured by 
the metric F1-score (Figure 2C and Table S2). For all four states, 
POST outperforms other methods, although POST-DP has a 
slightly higher F1-score than POST for tetramers. It turns out 
that all methods achieve a higher F1-score for the prediction of 
monomers. For example, POST's F1-score is over 0.8 for mono-
mers, which reduces to ~0.6 for dimers and trimers. Tetramers 
are more difficult to predict than others, as indicated by the 
lower F1-score (~0.4) for all methods. The performance differ-
ence between different oligomeric states may be accounted for 
by the fact of uneven distribution of oligomers. For instance, 
about 47.7% of the quaternary structures in the Q-BioLiP are 
monomers. In contrast, dimers, trimers, and tetramers account 
for only 28.9%, 4.4%, and 8.1%, respectively. In addition, some 
proteins can perform different biological functions in multiple 
oligomeric states. For example, more than two possible oligo-
meric states exist in 57 proteins from the dataset TS1146, and the 
monomeric state is included for 50 out of these 57 proteins. For 
such proteins, all methods tend to assign a higher probability to 

the monomeric state than to other states, which further explains 
the higher F1-score for monomers.

We propose that the correct assignment of oligomeric states can 
help the subsequent step of structure modeling. One such exam-
ple is given in Figure 4, which is a homodimer for the protein 
phage VqmA-DPO (PDB ID: 7DWM) from the TS1146 dataset. 
The protein is successfully predicted as a dimer by POST, with 
a probability of 0.93 (Figure 4A). For its native structure, each 
chain contains two discontinuous domains. Close inter-chain 
interactions are observed in the dimeric structure (Figure 4B), 
which makes the prediction of the monomeric structure chal-
lenging. When predicting the structure as a monomer by 
AlphaFold2 [9]/trRosetta [31] (without templates), the TM-score 
and RMSD of the predicted model are ~0.6 and ~13 Å, respec-
tively (Figure  4C). In comparison, when folding two subunits 
together with AlphaFold-Multimer [15], the predicted structure 
becomes more accurate, with a TM-score of 0.71 and RMSD of 
5.52 Å (Figure 4D). This example shows the crucial role of iden-
tifying the oligomeric state in guiding subsequent structure 
prediction.

3.3   |   Test on CASP14 and CASP15 Targets

We seek to further validate the robustness of our method on the 
targets from the CASP14 and CASP15 experiments. A total of 

FIGURE 4    |    An example of a successful prediction. (A) The probability distribution of four oligomeric states by POST. (B) The native structure 
of 7DWM is composed of two identical subunits (shown in green and slate surfaces). (C) The structures are predicted by AlphaFold2 as a monomer 
(magenta cartoon) and (D) AlphaFold-Multimer as a dimer (magenta and blue cartoons). The native structure is shown in green and slate cartoons.
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58 and 49 targets with up to four identical subunits were col-
lected from CASP14 and CASP15, respectively. The distribu-
tion of these targets in terms of the oligomeric state is shown in 
Figure S1B.

The results of POST and its component methods on the CASP14 
and CASP15 targets are summarized in Table 1. Templates re-
leased after the dates of the corresponding CASP experiments 
were excluded. POST performs similarly to the reported perfor-
mance on the TS1146 dataset, with F1-scores slightly lower for 
the CASP14 and CASP15 targets (0.730, 0.690, and 0.612 for the 
TS1146, CASP14, and CASP15 datasets, respectively). On the 
CASP14 targets, POST demonstrates significant improvements 
in F1-score (10.2%–55.8%) compared to its component methods, 
despite slightly lower recall than POST-DP. On the CASP15 tar-
gets, POST and POST-DP achieve the same F1-score of 0.612, 
outperforming other component methods. Note that the accu-
racy on the CASP15 targets is lower than on the CASP14 targets 
for all methods. This is probably because the CASP15 targets 
have limited MSAs (the MSA depth is less than 20 for over 20% 
of targets). For example, the CASP15 target T1130 is a mono-
meric protein that lacks an MSA, which causes HHsearch to fail 
in identifying a suitable template. In contrast, with the protein 
language model, PLMSearch enables the prediction of the mono-
meric state of T1130. However, in the case of POST, the absence 
of templates identified by HHsearch prevents the scoring func-
tion from assigning a high probability to the monomeric state.

We also evaluate the performance of different oligomeric states 
(Table S3). Similar to the TS1146 dataset, most targets are mono-
mers, i.e., 77.6% and 61.2% for CASP14 and CASP15, respectively. 
All methods perform much better on these monomeric targets 
than on other oligomeric targets. For example, on the targets 
from both CASP14 and CASP15, POST's F1-scores are > 0.700 
for monomers, which reduce to < 0.500 for other oligomers.

3.4   |   Comparison With Other Independent 
Methods

We first compare POST with SeqTrans, a sequence identity-
based nearest-neighbor approach (Supporting Information Text 
1.4). In this approach, the oligomeric state of a query protein 

is directly transferred from the template with the highest se-
quence identity to the query protein. When using the full tem-
plate library, this method, denoted as SeqTrans_Full, achieves 
an F1-score of 0.606 on the TS1146 dataset (Table 2). However, 
its performance deteriorates significantly when templates with 
≥ 30% sequence identity are excluded, with the F1-score drop-
ping to 0.457. These data highlight that SeqTrans only works 
well when highly similar templates are available. In contrast, 
despite excluding templates with ≥ 30% sequence identity, POST 
still outperforms SeqTrans_Full across all metrics, for example, 
achieving a 20.5% higher F1-score (0.730 vs. 0.606). This demon-
strates the robustness of POST.

We then compare POST against two sequence-based deep 
learning methods, QUEEN [32] and DeepSub [33]. As detailed 
in Table 2, POST demonstrates significantly superior perfor-
mance across all evaluation metrics, exhibiting substantial 
F1-score gains of 15.9% and 30.8% over QUEEN and DeepSub, 
respectively. This difference can be primarily attributed to 
POST's strategy of integrating information from multiple tem-
plates, whereas QUEEN and DeepSub rely solely on neural 
network-based prediction. Furthermore, POST uniquely en-
ables the simultaneous prediction of multiple oligomeric states 
for a given protein sequence, as exemplified by the colibactin 
self-resistance protein ClbS (Figure 5). Experimentally, ClbS is 
observed in both monomeric (bound to two CHES molecules, 
PDB ID: 7MTT) and dimeric states (complexed with a dsDNA, 
PDB ID: 7MTL). POST successfully predicted both states 
(Figure  5C), while QUEEN and DeepSub predicted a single 
state (dimer and monomer, respectively).

Further comparisons on the CASP14 and CASP15 targets show 
that POST consistently outperforms QUEEN and DeepSub, with 
F1-score improvements ranging from 14.4% to 82.1% (Figure 6B). 
Notably, QUEEN exhibited a significant F1-score drop from 
0.603 on the CASP14 to 0.449 on the CASP15 targets. This de-
crease was observed across all oligomeric states (Table  S3). 
This aligns with our earlier analysis indicating the increased 
difficulty of CASP15 targets. Despite this, POST achieves con-
sistently high accuracy on both datasets, with F1-scores above 
0.600, further confirming its robustness.

The Venn diagram in Figure  6A reveals the complementarity 
between POST and the two deep learning-based approaches, 

TABLE 1    |    Performance of POST and three individual methods on 
the targets from CASP14 and CASP15.

Dataset Method F1-score Precision Recall

CASP14 POST-HH 0.443 0.440 0.448

POST-PL 0.603 0.540 0.741

POST-DP 0.626 0.529 0.828

POST 0.690 0.638 0.793

CASP15 POST-HH 0.340 0.327 0.367

POST-PL 0.602 0.551 0.714

POST-DP 0.612 0.565 0.714

POST 0.612 0.592 0.653

Note: Bold values denote the best performance in each metric.

TABLE 2    |    Performance of different methods for the prediction of 
oligomeric states on the TS1146 dataset. SeqTrans is a naïve method 
that transfers the annotations from the closest template.

Method F1-score Precision Recall

SeqTrans_Full1 0.606 0.608 0.623

SeqTrans_302 0.457 0.459 0.471

QUEEN 0.630 0.647 0.623

DeepSub 0.558 0.573 0.551

POST 0.730 0.711 0.788

Note: Bold values denote the best performance in each metric.
1All homologous templates were used.
2Templates with ≥ 30% sequence identity to the query protein were excluded.

 10970134, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prot.70017 by Jianyi Y

ang - Shandong U
niversity L

ibrary , W
iley O

nline L
ibrary on [06/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 of 12 Proteins: Structure, Function, and Bioinformatics, 2025

QUEEN and DeepSub. While 28.3% of the correct predictions 
are shared among all three methods, each method uniquely con-
tributes correct predictions for 6%–9% of benchmark proteins. 

These findings suggest the potential of combining template-
based voting with deep learning models, representing a promis-
ing avenue for future development.

FIGURE 5    |    An illustrative example showing that POST successfully predicts monomeric and dimeric states for the colibactin self-resistance pro-
tein ClbS. (A) Crystal structure of the monomeric state of ClbS (colored by green) bound to two CHES molecules (displayed by magenta spheres); (B) 
Crystal structure of the dimeric state of ClbS (colored by green and slate) in complex with a dsDNA (orange and yellow); (C) The probability distribu-
tion of oligomeric states predicted by POST.

FIGURE 6    |    Performance comparison of different methods on four datasets. (A) Venn diagram of correct predictions (success rate) by POST, 
QUEEN, and DeepSub on the TS1146 dataset; (B) F1-scores of POST, QUEEN, and DeepSub on CASP14, CASP15, and TS1220 datasets; (C) MCC, 
Precision, and Recall values of POST, QUEEN, and DeepSub for distinguishing between physiological and non-physiological interfaces on the 
TS1220 dataset; (D) ROC curves and AUC scores of POST and 11 structure-based methods on the 1134 proteins. The different trend of the POST ROC 
curve may be explained by the uneven probability distribution (Figure S2).
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3.5   |   Distinguishing Between Physiological 
and Non-Physiological Interfaces

We also tested POST on an independent dataset crafted by 
Schweke et al. [20] for addressing the challenge of distinguish-
ing physiological from non-physiological interfaces. Since POST 
uses only the sequence as input, we collected the FASTA se-
quence for each structure. In this study, physiological interfaces 
are regarded as dimers, while non-physiological interfaces are 
regarded as monomers. From the original 1677 proteins, we ob-
tained a total of 1220 proteins (denoted by TS1220), of which 630 
are monomers and 590 are homodimers, after removing those 
sharing ≥ 20% sequence identity with proteins in the training set.

We initially investigated the performance of oligomeric state 
prediction on the TS1220 dataset. The performance of sequence-
based methods (POST, QUEEN, and DeepSub) on this dataset 
is presented in Figure  6B. Consistent with earlier findings, 
POST demonstrates superior ability in predicting protein oligo-
meric states among the three methods, achieving the highest 
F1-score of 0.700, substantially exceeding that of QUEEN (F1-
score = 0.616) and DeepSub (F1-score = 0.539).

We next assessed the performance of POST, QUEEN, and 
DeepSub in distinguishing between physiological and non-
physiological interfaces, which is achieved by adjusting the 
output of these methods into binary predictions (monomeric vs. 
multimeric states). POST maintains its advantage in this task, 
with an MCC of 0.412, precision of 0.634, and recall of 0.854, 
consistently outperforming those of QUEEN and DeepSub 
(Figure 6C).

We also compared POST with other structure-based meth-
ods evaluated in the assessment work [20]. Predicted results 
for all 1677 proteins across 13 structure-based methods were 
downloaded from https://​github.​com/​vibbi​ts/​Elixi​r-​3DBio​Info-​
Bench​mark-​Prote​in-​Inter​faces​. To prevent overestimation of 
our method, we removed proteins sharing more than 20% se-
quence identity with our training set, resulting in a total of 1220 
proteins. To ensure a fair comparison across all methods, we 
excluded proteins with missing prediction scores (i.e., “NA”). 
Notably, two methods, from the Guerois and SWISS-MODEL 
groups, were excluded from this analysis due to lacking predic-
tion scores for about 40% of the proteins. Including them would 
result in a significantly reduced dataset of only 727 proteins, in-
troducing potential bias. After removing proteins with missing 
prediction scores from the remaining 11 methods, we finalized 
our dataset at 1134 proteins.

The ROC curves and AUC scores of all compared methods on the 
1134 proteins are summarized in Figure 6D. Due to differences 
in the dataset and set of assessed methods (as detailed above), 
the AUC scores in Figure 6D are slightly different from those 
reported in the work [20]. AUC values range from 0.70 to 0.86, 
with the highest score achieved by DeepRank-GNN [34], a deep 
learning-based method. POST achieves an AUC of 0.74, placing 
it eighth among 12 evaluated methods. This result is anticipated, 
as POST is a sequence-based approach that does not utilize 
structural information. Nevertheless, POST demonstrates com-
petitive advantages over several structure-based methods, e.g., 
those developed by the MOBI, Wolfson, and Oliva groups [20]. 

This suggests the potential of sequence-based paradigms for pro-
tein oligomeric state prediction, particularly in scenarios where 
structural data is limited or of low resolution. In addition, the 
structure-based methods suffer from the limitation of not being 
designed to recognize the oligomeric state but rather to score 
docking models [20]. The assessment work [20] indicates that 
AlphaFold2 achieved a high AUC score (> 0.95) based on DockQ 
scores. In our reduced dataset, AlphaFold-Multimer (unrelaxed) 
also demonstrates a very high AUC score of 0.97, suggesting its 
capability to accurately distinguish between physiological and 
non-physiological interfaces.

3.6   |   Comparison With AlphaFold2

We further compare POST with AlphaFold2 (AF2, v2.3.2) 
[9, 15]. For each protein sequence, AF2 was run to model the 
protein in all four different states (i.e., monomer, homo-dimer, 
homo-trimer, and homo-tetramer). The oligomeric state is in-
ferred based on the confidence scores of the predicted structure 
models, ipTM + pTM for multimers and pLDDT for monomers 
(see Supporting Information Text 1.5). We evaluated the per-
formance of AF2 on the TS1146, the CASP15 targets, and the 
TS1220 datasets. For TS1146, proteins from the AF2 training set 
were excluded, resulting in a total of 580 targets. For 142 of these 
targets, AF2 failed due to an out-of-memory issue, leaving 438 
targets for testing (denoted by TS438).

Figure 7 summarizes the results of POST and AF2. On the above 
datasets, POST achieves a higher (on TS1220) or comparable (on 
TS438 and CASP15) F1-score compared to AF2. On TS438 and 
CASP15 targets, due to the uneven distribution of monomers and 
dimers, both POST and AF2 perform much better on monomers 
than on dimers (Table  S4). On the TS1220 dataset, where the 
distribution of monomers and dimers is balanced, POST shows 
similar performance on both monomers and dimers. In contrast, 
the F1-score of AF2 is still slightly higher for monomers than 
for dimers, possibly because AlphaFold-Multimer was trained 
on monomer structures, which may introduce a bias towards 
monomers. In addition, when POST is adjusted to predict mono-
mers and dimers only, its F1-score increases slightly from 0.700 
to 0.716. This improvement is primarily due to the reduction in 

FIGURE 7    |    F1-score values of POST and AF2 on the TS438, 
CASP15, and TS1220 datasets.
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the false negative rate, in which fewer monomers are misclassi-
fied as higher-order oligomers.

POST and AF2 are complementary to each other. First, we have 
to run AF2 to predict the structures of a protein in all four states, 
which is very time-consuming. As shown in Table S5, POST is 
45-fold faster than AF2, even though they make use of CPU 
and GPU, respectively. A combination of POST and AF2 will 
significantly speed up the process. Second, when the structures 
predicted by AF2 in all four states are of low confidence, the 
oligomeric state inference of the method becomes ineffective. 
For example, for the CASP15 target T1123, the average pLDDT 
of the monomer structure predicted by AF2 is about 30, while 
the ipTM + pTM scores for the predicted dimer, trimer, and te-
tramer structures are less than 0.2. In this case, it becomes im-
possible to infer the oligomeric state from AF2. Template-based 
inference by POST is valuable in such circumstances. Finally, 
AF2 failed to model trimer or tetramer structures for very long 
sequences (> 1500 amino acids) in our computer cluster, which 
prevented appropriate inference of the oligomeric state. For 
example, in the subset of TS1146 containing 580 targets (not 
included in the AF2 training set), about 24% of the sequences 
could not have their oligomeric states predicted by AF2. In con-
trast, POST can still provide reliable predictions for these cases.

3.7   |   Ablation Study

We investigate the impact of three factors here, i.e., the template 
library, the scoring function, and individual prediction methods 
on the benchmark dataset TS1146.

3.7.1   |   Impact of the Template Library

To speed up the template searching, the template library 
(OSDB, ~82 k templates) was clustered at 95% sequence identity 
to remove redundancy, resulting in a non-redundant library 
(OSDB95, ~50 k templates). To assess the impact of this process, 
we ran POST-DP and POST on both libraries. Table S6 shows 
that the results from both libraries are comparable for both 
methods. However, since the size of the non-redundant library 
is about half of the size of the redundant library, the speed is 
about two times faster when running on the non-redundant li-
brary. As a result, we decided to use the non-redundant library 
for POST-DP and POST.

3.7.2   |   Impact of the Scoring Function

In the scoring function of the dynamic programming method 
POST-DP, four components are considered, i.e., sequence pro-
files, secondary structure, BLOSUM62, and hydrophobicity. We 
evaluate the impact of each component on the prediction accu-
racy by revising the scoring function accordingly. Figure  8A 
shows that BLOSUM62 and sequence profiles stand out as 
the two most influential components to the scoring function 
(both F1-scores are > 0.670), followed by secondary structure 
and hydrophobicity. As the impact of each component sur-
passes random prediction and they are largely complementary 
to each other, the combination of all components results in an 

increase of 3.34% in F1-score in POST-DP when compared with 
BLOSUM62.

3.7.3   |   Impact of Individual Prediction Methods

We conducted an ablation experiment to investigate the per-
formance of different combinations of the methods POST-DP, 
POST-PL, and POST-HH. The purpose of this experiment is 
to assess whether combining multiple methods could enhance 
accuracy compared to using any individual method alone. The 
way of combination is similar to that described in Section 2.2.4, 
with the detailed formulas and weights provided in Supporting 
Information Text 1.3. The F1-score comparison of the various 
combinations reveals that the combination of multiple methods 
consistently outperforms all individual methods (Figure  8B). 
The highest F1-score of 0.730 is achieved when all three meth-
ods are combined, indicating that each method contributes to 
the prediction task. Among the individual methods, POST-DP 
contributes the most, not only achieving the highest F1-score 
(0.711), but also offering improvements of 4.29%–18.23% when 
combined with the other two methods. POST-PL ranks sec-
ond in terms of contribution, with improvements ranging from 
1.39% to 14.94%. POST-HH demonstrates the smallest contribu-
tion (0.14%–3.09%).

FIGURE 8    |    Ablation study on the TS1146 dataset. (A) F1-score val-
ues of POST-DP (DP) and the versions that rely on the dynamic pro-
gramming algorithm with single scoring items: BLOSUM62 (B62), 
profile alignment (Pro), secondary structure (SS), and hydrophobicity 
matrix (Hyd). (B) F1-score values of POST-HH (H), POST-PL (P), and 
POST-DP (D), and four different combinations.

A

B
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3.8   |   Limitations of POST

Though POST is promising to make accurate predictions of pro-
tein oligomeric state, we admit that there are still a few limita-
tions. The first one is the reliance on templates by nature. As a 
template-based method, POST infers the oligomeric state using 
homologous templates, which works well when templates are 
available. Unfortunately, it cannot make meaningful predic-
tions when no homologous templates are available. This sug-
gests that it may be worthwhile to develop other template-free 
methods, for example, using deep learning. The second limita-
tion is the consideration of a limited number of oligomeric states. 
Currently, only four states are considered (monomer, dimer, tri-
mer, and tetramer), as the number of available samples for other 
oligomers in the PDB is limited. This might be extended in the 
future by considering other sequence-based experimental an-
notations, rather than relying solely on PDB structures. Finally, 
only homo-oligomers are considered. Hetero-oligomers are ig-
nored in this work due to their higher complexity. For instance, 
the stoichiometry for two different subunits (A and B) may be 
A1B1, A2B1, A1B2, and so on. We plan to address these limita-
tions in the future.

4   |   Conclusion

Accurate assignment of the protein oligomeric state is crucial 
in protein structure prediction and protein design. We devel-
oped POST, a new method to predict the protein oligomeric 
state using multiple templates detected by three complementary 
methods, i.e., dynamic programming, protein language model, 
and hidden Markov model. Assessment on two independent 
benchmark datasets and targets from CASP14 and CASP15 
shows that POST is promising, achieving an overall F1-score 
> 0.600. Nevertheless, we acknowledge that POST has its limita-
tions, such as the dependence on homologous templates, which 
may be addressed by developing new methods, such as those 
based on deep learning.
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