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1 Supplementary Figures and Tables1

a

b

c d

Supplementary Fig. 1 Evaluation of other baselines. a-c, The all-versus-all search test on SCOPe40-test. d, Eval-
uation on new proteins (see “New protein search test” Section). Supplementary Table 2 and Supplementary Table 4 record
the specific values of each metric. Source data are provided as a Source Data file.
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Supplementary Fig. 2 MAP, P@1, and P@10 on the search test with Swiss-Prot as the target dataset.
Supplementary Table 1 records the specific values of each metric. Source data are provided as a Source Data file.



Springer Nature 2021 LATEX template

4 PLMSearch

a

b

c

d e

Supplementary Fig. 3 Ablation experiments: PfamClan, SS-predictor, and PLMAlign make PLMSearch
more robust. a, Two-dimensional scatter plot of the predicted similarity and TM-score. From left to right are Euclidean,
COS, and SS-predictor. We selected 100,000 protein pairs with the highest TM-scores from the search results of five queries
(with Swiss-Prot as the target dataset, 100,000 among a total of 2,150,700 query-target pairs) and used Euclidean, COS,
and SS-predictor as the predicted similarity. We normalized the predicted similarity to 0-1 as the y-axis and their TM-scores
(between 0-1) as the x-axis, thereby plotting the 100,000 protein pairs as points on a 2D plane. SS-predictor obtained the
highest correlation coefficient with TM-score. b-e, Ablation experiments, with the same metrics used in Fig. 2 in the main
text. Supplementary Table 2 and Supplementary Table 4 record the specific values of each metric. Source data are provided
as a Source Data file.
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Supplementary Fig. 4 Clustering results based on Pfam clan on SCOPe40-test and Swiss-Prot. a, SCOPe40-
test. b, Swiss-Prot. Proteins belonging to the same Pfam clan are clustered. The clustering results show a significant
long-tailed distribution. After pre-filtering with PfamClan, more than 50% of the pre-filtered protein pairs (orange rectangles
in the figure) are from the largest 1-2 clusters (big clusters), which only accounts for a very small part of the entire clusters
(SCOPe40-test: 0.231%; Swiss-Prot: 0.032%). Therefore, big clusters will result in a significant number of irrelevant protein
pairs in the pre-filtering results, reducing accuracy, and must be further sorted and filtered based on similarity, which is what
SS-predictor does. See Supplementary Table 8 for specific statistical data. Source data are provided as a Source Data file.
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Supplementary Fig. 5 Reference value of COS similarity and PLMAlign score. a-b, COS similarity. c-d,
PLMAlign score. a, c show the posterior probability of proteins with a given similarity being in the same fold or different
folds in SCOPe40-train. b, d show the similarity distribution of the same fold and different folds protein pairs using kernel
density estimation (smoothed histogram using a Gaussian kernel with the width automatically determined). The posterior
probability corresponding to the similarity is shown in Supplementary Table 12. See “Reference similarity” Supplement
Section for more details.
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Supplementary Fig. 6 Evaluation on remote homology alignment. a, Malisam. b, Malidup. Figures here use the
embedding generated by ProtT5-XL-UniRef50 as input. Supplementary Table 15 records the specific values of each metric.
Source data are provided as a Source Data file.



Springer Nature 2021 LATEX template

8 PLMSearch

Supplementary Fig. 7 The data distribution of max sequence identity of each protein in the test dataset
against the training dataset (Supplementary Table 16). The majority of the maximum sequence identity is between
0.2 and 0.3. The sequence identity difference between their data is significantly bigger than that of pure random division,
especially for the SCOPe40-test, which is the major test data, since the domains in SCOPe40-test belong to different folds
with all domains in SCOPe40-train.
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Supplementary Fig. 8 Comparison of ESM-1b and ProtT5-XL-UniRef50. The cos distance between the per-
residue embeddings of two proteins. a, Self-alignment (n∗n). b, Alignment with another protein (n∗m). The COS distance
between embeddings generated by ProtT5-XL-UniRef50 has better discrimination, both in self-alignment and alignment
with another protein.
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MAP P@K
Methods MAP P@1 P@10

Baselines
MMseqs2 0.345 0.802 0.737
Blastp 0.343 0.812 0.748
Foldseek 0.497 0.732 0.697
Foldseek-TM 0.551 0.833 0.794

Our methods
SS-predictor 0.610 0.812 0.754
PLMSearch 0.668 0.843 0.801

Supplementary Table 1 Search test with Swiss-Prot as the target dataset. TPs are protein pairs with
TM-scores higher than 0.5. The definition of MAP and P@K is detailed in “Metrics” Section. The highest value achieved
for each metric is highlighted in bold.

AUROC AUPR MAP P@K Time
Methods Fam Sfam Fold Fam Sfam Fold MAP P@1 P@10 Seconds

Sequence search
MMseqs2 0.318 0.050 0.002 0.430 0.091 0.014 0.147 0.668 0.260 2 s
Blastp 0.527 0.161 0.004 0.717 0.342 0.029 0.183 0.717 0.354 10 s
HHblits 0.920 0.363 0.064 0.969 0.623 0.256 0.320 0.858 0.577 10,998 s
EAT 0.648 0.230 0.025 0.646 0.225 0.020 0.350 0.813 0.575 27 s
pLM-BLAST 0.940 0.642 0.176 0.973 0.779 0.305 0.659 0.921 0.760 18,812 s

Structure search — structural alphabet
3D-BLAST-SW 0.653 0.255 0.045 0.621 0.264 0.047 0.446 0.825 0.604 -
CLE-SW 0.672 0.265 0.033 0.432 0.171 0.035 0.440 0.814 0.592 -
Foldseek 0.883 0.584 0.214 0.921 0.703 0.320 0.598 0.908 0.751 12 s
Foldseek-TM 0.898 0.664 0.296 0.906 0.695 0.337 0.626 0.905 0.756 173 s

Structure search — structural alignment
CE 0.847 0.527 0.148 0.882 0.627 0.245 0.618 0.897 0.734 -
Dali 0.923 0.702 0.281 0.948 0.814 0.454 0.702 0.927 0.790 -
TM-align 0.935 0.721 0.346 0.971 0.866 0.569 0.781 0.941 0.806 11,303 s

Our methods
Euclidean 0.699 0.309 0.039 0.456 0.107 0.016 0.364 0.829 0.603 9 s
COS 0.705 0.316 0.040 0.514 0.130 0.017 0.367 0.830 0.606 8 s
SS-predictor 0.869 0.623 0.225 0.891 0.713 0.324 0.601 0.821 0.686 10 s
PLMSearch 0.928 0.826 0.438 0.931 0.849 0.473 0.685 0.922 0.765 4 s
PLMAlign 0.946 0.652 0.196 0.974 0.807 0.354 0.670 0.919 0.763 12,470 s
SS-predictor + PLMAlign 0.949 0.665 0.211 0.975 0.822 0.391 0.677 0.915 0.763 3,596 s
PLMSearch + PLMAlign 0.933 0.787 0.342 0.956 0.887 0.521 0.660 0.928 0.763 807 s

Supplementary Table 2 All-versus-all search test on the SCOPe40-test dataset. The definition of AUROC,
AUPR, MAP, and P@K is detailed in “Metrics” Section. The highest value achieved is highlighted in bold. Due to the
width limit, Family and Superfamily are abbreviated as Fam and Sfam in the table, respectively. The total search time
spent for the all-versus-all search test is recorded.
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Methods Family Superfamily Fold Total
Sequence search

MMseqs2 2.20 0.51 0.02 2.74
Blastp 4.39 1.21 0.05 5.65
HHblits 9.10 11.25 3.92 24.29
EAT 6.17 6.12 1.65 13.96
pLM-BLAST 8.96 30.57 13.95 53.50

Structure search — structural alphabet
3D-BLAST-SW 6.95 8.92 1.44 17.32
CLE-SW 6.97 9.65 1.10 17.74
Foldseek 8.57 28.33 14.19 51.10
Foldseek-TM 8.68 34.62 20.79 64.11

Structure search — structural alignment
CE 8.70 23.82 8.72 41.25
Dali 9.23 33.62 16.74 59.60
TM-align 9.29 38.57 24.83 72.70

Our methods
Euclidean 6.88 8.52 1.70 17.12
COS 6.94 8.79 1.77 17.52
SS-predictor 8.78 34.88 20.62 64.29
PLMSearch 9.32 47.44 48.01 104.78
PLMAlign 9.04 32.40 16.68 58.12
SS-predictor + PLMAlign 9.10 33.60 18.27 60.97
PLMSearch + PLMAlign 9.11 41.50 32.07 82.69

Supplementary Table 3 The average number of family TPs, superfamily TPs, fold TPs, and total TPs up
to the first FP on the SCOPe40-test search test. The average number of the total TPs also means the average rank
of the first FP. The highest value achieved is highlighted in bold.

MAP P@K Time
Methods MAP P@1 P@10 Seconds

Sequence search
MMseqs2 0.107 0.518 0.149 0.1 s
Blastp 0.132 0.590 0.270 0.5 s
HHblits 0.279 0.872 0.581 548.1 s
EAT 0.315 0.790 0.576 1.3 s
pLM-BLAST 0.682 0.936 0.805 937.6 s

Structure search — structural alphabet
3D-BLAST-SW 0.383 0.763 0.580 -
CLE-SW 0.392 0.781 0.571 -
Foldseek 0.521 0.863 0.730 0.6 s
Foldseek-TM 0.560 0.881 0.740 8.6 s

Structure search — structural alignment
CE 0.580 0.845 0.722 -
Dali 0.643 0.909 0.804 -
TM-align 0.776 0.945 0.826 563.3 s

Our methods
Euclidean 0.358 0.790 0.621 0.4 s
COS 0.363 0.790 0.628 0.4 s
SS-predictor 0.612 0.845 0.712 0.5 s
PLMSearch 0.612 0.845 0.712 0.5 s
PLMAlign 0.692 0.936 0.807 621.5 s
SS-predictor + PLMAlign 0.679 0.927 0.801 179.2 s
PLMSearch + PLMAlign 0.679 0.927 0.801 179.2 s

Supplementary Table 4 Evaluation on new proteins. See “New protein search test” Section. The definition of
MAP, P@K is detailed in “Metrics” Section. The highest value achieved is highlighted in bold. The total search time spent
for the search test is recorded.
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Query num 1 10 100
Swiss-Prot (568K proteins)

SS-predictor 0.2 min 0.5 min 10.3 min
PLMSearch 0.2 min 1.1 min 15.6 min

UniRef50 (53.6M proteins)
SS-predictor 1.6 min 6.3 min 60.2 min
PLMSearch 2.3 min 12.1 min 114.6 min

Supplementary Table 5 Total running time of the web server. The environment of the web server is CPU ONLY,
with 64 * Intel(R) Xeon(R) CPU E5-2682 v4 @ 2.50 GHz and 512 GB RAM. The time required to search 1, 10, and 100
query proteins with Swiss-Prot (568K proteins, the original dataset without filtering) and UniRef50 (53.6M proteins) as
the target dataset were counted respectively.

Methods
Search

5. Alignment Total

1. Query embedding 2. Query pfam 3. Pfamclan 4. SS-predictor
Swiss-Prot (568K proteins)

SS-predictor 65 0 0 41 513 619
PLMSearch 65 35 29 28 779 936

UniRef50 (53.6M proteins)
SS-predictor 62 0 0 3,006 548 3,616
PLMSearch 62 38 3,324 2,893 563 6,880

Supplementary Table 6 Running time (Seconds) of the web server at each step. Search 100 query proteins
with Swiss-Port (568K proteins) and UniRef50 (53.6M proteins) as the target dataset.

All pairs Easy pairs Remote homology pairs
Methods Recall Miss Recall Miss Recall Miss
MMseqs2 0.450 0.549 1.000 0.000 0.165 0.834
Blastp 0.462 0.537 1.000 0.000 0.183 0.816
Foldseek 0.898 0.101 1.000 0.000 0.845 0.154
Foldseek-TM 0.901 0.098 1.000 0.000 0.850 0.149
SS-predictor 0.950 0.049 1.000 0.000 0.924 0.075
PLMSearch 0.989 0.010 1.000 0.000 0.983 0.016

Supplementary Table 7 The recall rate of different methods for easy pairs and remote homology pairs. We
selected the 5000 pairs with the highest similarity for different search methods and counted the recalled and missed pairs. As
shown in Fig. 3 c-h in the main text, “Easy pairs” refers to the protein pairs with similar sequences and similar structures
in the first quadrant. “Remote homology pairs” refers to the protein pairs with dissimilar sequences but similar structures
in the fourth quadrant. “All pairs” refers to all protein pairs with TM-score > 0.5 in the first and fourth quadrants.

General statistics
Dataset Protein num Cluster num Pair num
SCOPe40-test 2,207 432 149,554
Swiss-Prot 430,140 6,086 3,852,993,796

Big cluster statistics
Dataset Protein num Cluster num Pair num
SCOPe40-test 305(13.8%) 1(0.231%) 92,720(61.9%)
Swiss-Prot 65,453(15.2%) 2(0.032%) 2,149,740,012(55.7%)

Small cluster statistics
Dataset 2 proteins cluster num 1 protein cluster num (Singleton cluster num)
SCOPe40-test 94 224
Swiss-Prot 661 1,146

Supplementary Table 8 Statistics of clustering results based on Pfam clan on SCOPe40-test and
Swiss-Prot. The Big cluster in SCOPe40-test is CL0123. The Big clusters in Swiss-Prot are CL0023 and CL0063.
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Methods Input Sensitivity Speed Query mode
Sequence search

MMseqs2 Sequence Low Very Fast Multi query
Blastp Sequence Low Very Fast Multi query
HHblits Profile HMMs High Slow Single query
EAT Per-protein embedding Low Very Fast Multi query
pLM-BLAST Per-residue embedding Very High Slow Pairwise

Structure search — structural alphabet
Foldseek Structure High Very Fast Multi query
Foldseek-TM Structure Very High Fast Multi query

Structure search — structural alignment
TM-align Structure Very High Slow Pairwise

Our methods
SS-predictor Per-protein embedding High Very Fast Multi query
PLMSearch Per-protein embedding Very High Very Fast Multi query
PLMAlign Per-residue embedding Very High Slow Pairwise

Supplementary Table 9 Summary of the characteristics of search methods. According to the performance on
the all-versus-all search test on SCOPe40-test, the methods are summarized according to their input, sensitivity, speed,
and query mode.

Search methods Alignment methods
Input Per-protein embeddings Per-residue embeddings
Speed Very fast Slow

Similarity Yes Yes

How to obtain similarity
Fast retrieval based on
similarity prediction between embeddings

Pairwise alignment based on SW/NW,
obtaining similarity from alignment scores

Query mode Multi query Pairwise
Alignment (global or local) No Yes
Representation method PLMSearch, EAT PLMAlign, pLM-BLAST

Supplementary Table 10 Differences between search methods and alignment methods.
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Protein 1 Protein 2
SCOPe ID d1oh0a d1ohpa
PfamFamily PF12680 (SnoaL 2) PF02136 (NTF2)
PfamClan CL0051 (NTF2) CL0051 (NTF2)
TM-score 0.926

Structure

Protein 1 Protein 2
SCOPe ID d1ifca d2qo4a
PfamFamily PF00061 (Lipocalin) PF14651 (Lipocalin 7)
PfamClan CL0116 (Calycin) CL0116 (Calycin)
TM-score 0.884

Structure

Protein 1 Protein 2
SCOPe ID d3c3ka d2gx6a
PfamFamily PF13377 (Peripla BP 3) PF13407 (Peripla BP 4)
PfamClan CL0144 (Periplas BP) CL0144 (Periplas BP)
TM-score 0.880

Structure

Protein 1 Protein 2
SCOPe ID d3k2aa d1akha
PfamFamily PF05920 (Homeobox KN) PF00046 (Homeodomain)
PfamClan CL0123 (HTH) CL0123 (HTH)
TM-score 0.876

Structure

Supplementary Table 11 Case study for the pre-filtering results of PfamFamily & PfamClan. We
investigated several protein pairs with TM-score>0.5 but missed by PfamFamily, and found that although the protein
pairs do not share the domain belonging to the same family, the domain families belong to the same clan. Therefore,
pre-filtering with PfamClan instead of Pfamfamily can help recall these protein pairs.
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SS-predictor
Similarity 0.1 0.3 0.5 0.7 0.9
Posterior probability(same fold) 0.000 0.003 0.456 1.000 1.000
Posterior probability(different folds) 1.000 0.996 0.543 0.000 0.000

COS
COS 0.991 0.993 0.995 0.997 0.999
Posterior probability(same fold) 0.327 0.444 0.717 1.000 1.000
Posterior probability(different folds) 0.672 0.555 0.282 0.000 0.000

PLMAlign
Score 3.0 5.0 7.0 9.0 9.5
Posterior probability(same fold) 0.001 0.020 0.285 0.545 0.749
Posterior probability(different folds) 0.998 0.979 0.714 0.454 0.250

Supplementary Table 12 Posterior probability of SS-predictor similarity, COS similarity, and PLMAlign
score in SCOPe40-train. For SS-predictor, protein pairs with a similarity lower than 0.3 are usually assumed as
randomly selected irrelevant protein pairs. For COS, the reference similarity of 0.995 is selected. For PLMAlign, the
reference score of 9.5 is selected. See “Reference similarity” Supplement Section for more details.

Query Target
TM-score Foldseek SS-predictor

Default Avg. length Probability Similarity
UniProt ID P32352 Q5HJR8 0.343 0.173 1.000 0.285

Length 222 745

Structure

UniProt ID P32352 Q5U263 0.456 0.189 0.795 0.261

Length 222 1,146

Structure

UniProt ID P32352 Q5RF50 0.375 0.190 0.975 0.268

Length 222 758

Structure

UniProt ID P32352 Q8NYT6 0.334 0.168 0.996 0.287

Length 222 745

Structure

Supplementary Table 13 Four protein pairs selected for the manual inspection. They are filtered by Foldseek
but with a TM-score<0.2 (Wrong pairs, defined in Fig. 3b in the main text). TM-align(Default) uses the query protein
length as the normalized length. TM-align(Avg. length) uses the average length of protein pairs as the normalized length.
As reported in Foldseek’s paper, Foldseek searches out these pairs because it focuses on local similarity. However, TM-align
and PLMSearch focus on global similarity, so these pairs have TM-score<0.2 and similarity of SS-predictor lower than 0.3.
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Substitution
matrix

Gap
penalty

Scoring
matrix

Traceback Time

Smith-Waterman Fix
Affine:
10+0.5*(L-1)

Truncate to zero
Begin with the highest score,
end when 0 is encountered

-

Needleman-Wunsch Fix
Affine:
10+0.5*(L-1)

Can be negative
Begin with the lower right
of the matrix, end at top left

-

pLM-BLAST Cosine 0 Can be negative
Traverse from all
sequence boundaries

122,564 s

pLM-BLAST-global Cosine 0 Can be negative
Begin with the lower right
of the matrix, end at top left

18,812 s

PLMAlign Dot Product
Linear:
1 * L

Truncate to zero
Begin with the highest score,
end when 0 is encountered

12,796 s

PLMAlign-global Dot Product
Linear:
1 * L

Can be negative
Begin with the lower right
of the matrix, end at top left

12,470 s

Supplementary Table 14 Differences between the Smith-Waterman/Needleman-Wunsch algorithm,
pLM-BLAST, and PLMAlign. The analysis was conducted in four steps: Substitution matrix, Gap penalty, Scoring
matrix, and Traceback. The total alignment time spent for the all-versus-all search test on SCOPe40-test (4,870,849 pairs)
is recorded. Smith-Waterman [1] and Needleman-Wunsch [2] algorithm take the implementation of EMBL-EBI
(https://www.ebi.ac.uk) as an example.

Malisam Number detected F1 Recall Precision
Sequence

BLAST 2 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
HMMER 3 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
Needleman-Wunsch 129 0.032 ± 0.003 0.025 ± 0.002 0.043 ± 0.005
Smith-Waterman 129 0.033 ± 0.003 0.027 ± 0.002 0.044 ± 0.005

ProtT5-XL-UniRef50
pLM-BLAST 129 0.039 ± 0.009 0.030 ± 0.007 0.065 ± 0.014
pLM-BLAST-global 129 0.169 ± 0.014 0.149 ± 0.012 0.197 ± 0.016
PLMAlign 129 0.154 ± 0.015 0.148 ± 0.014 0.161 ± 0.016
PLMAlign-global 129 0.185 ± 0.014 0.178 ± 0.014 0.194 ± 0.015

ESM-1b
pLM-BLAST 129 0.013 ± 0.004 0.008 ± 0.002 0.035 ± 0.010
pLM-BLAST-global 129 0.047 ± 0.005 0.034 ± 0.004 0.082 ± 0.010
PLMAlign 129 0.048 ± 0.009 0.041 ± 0.008 0.060 ± 0.011
PLMAlign-global 129 0.129 ± 0.011 0.120 ± 0.010 0.142 ± 0.012

Malidup Number detected F1 Recall Precision
Sequence

BLAST 5 0.013 ± 0.013 0.006 ± 0.006 0.200 ± 0.200
HMMER 8 0.024 ± 0.024 0.013 ± 0.013 0.125 ± 0.125
Needleman-Wunsch 241 0.149 ± 0.011 0.121 ± 0.009 0.197 ± 0.014
Smith-Waterman 241 0.151 ± 0.011 0.123 ± 0.009 0.196 ± 0.014

ProtT5-XL-UniRef50
pLM-BLAST 241 0.182 ± 0.017 0.157 ± 0.016 0.244 ± 0.020
pLM-BLAST-global 241 0.523 ± 0.018 0.479 ± 0.018 0.581 ± 0.019
PLMAlign 241 0.517 ± 0.020 0.499 ± 0.020 0.538 ± 0.021
PLMAlign-global 241 0.560 ± 0.018 0.542 ± 0.017 0.582 ± 0.018

ESM-1b
pLM-BLAST 241 0.229 ± 0.019 0.222 ± 0.019 0.262 ± 0.021
pLM-BLAST-global 241 0.389 ± 0.021 0.343 ± 0.019 0.466 ± 0.022
PLMAlign 241 0.271 ± 0.021 0.258 ± 0.020 0.288 ± 0.021
PLMAlign-global 241 0.482 ± 0.018 0.464 ± 0.018 0.504 ± 0.018

Supplementary Table 15 Evaluation on remote homology alignment. F1, Recall, and Precision are counted
based on whether the generated alignment and manual alignment are consistent at each position. The highest value
achieved is highlighted in bold.

https://www.ebi.ac.uk
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Protein Protein pair

Training

SCOPe40-train 8,953
80,156,209 (8,953 * 8,953)

TM-score>0.5: 504,553
TM-score≤0.5: 79,651,656

CATHS40 21,474
28,440,312 (undersampled)
TM-score>0.5: 7,813,946

TM-score≤0.5: 20,625,460

Test

SCOPe40-test 2,207 4,870,849 (2,207 * 2,207)
New protein 110 242,770 (110 * 2,207)
Swiss-Prot 430,140 43,014,000 (100 * 430,140)

Target datasets on web server

Swiss-Prot (unfiltered) 568,744 query num * 568,744
PDB 679,875 query num * 679,875
UniRef50 53,625,855 query num * 53,625,855

Evaluation on remote homology alignment

Malisam 233 129
Malidup 448 241

Supplementary Table 16 Datasets. By setting 0.4 sequence identity as the threshold to filter homologs, the max
sequence identity of the test set relative to the training set does not exceed 0.4.

Methods Similarity Version
Sequence search

MMseqs2 Bit score Version 14.7e284
Blastp Bit score Version 2.12.0+
HHblits Probability Version 3.3.0
EAT 1 / (Embedding distance + 1) Commit bcb935b
pLM-BLAST Global similarity Commit 0f226b0

Structure search — structural alphabet
3D-BLAST-SW E-value in ascending order Beta102, with BLAST+ 2.2.26 and SSW version ad452e
CLE-SW Score PDB Tool v4.80, SSW commit ad452e
Foldseek Probability Version 6.29e2557
Foldseek-TM Probability Version 6.29e2557

Structure search — structural alignment
CE Z-score BioJava’s version 5.4.0
Dali Dali’s Z-score DaliLite.v5
TM-align TM-score Version 20170708

Supplementary Table 17 Similarity and versions of baselines.
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Methods Source
Sequence search

MMseqs2 https://github.com/soedinglab/MMseqs2
Blastp https://anaconda.org/bioconda/blast
HHblits https://github.com/soedinglab/hh-suite
EAT https://github.com/Rostlab/EAT
pLM-BLAST https://github.com/labstructbioinf/pLM-BLAST

Structure search — structural alphabet
3D-BLAST-SW http://3d-blast.life.nctu.edu.tw
CLE-SW https://github.com/realbigws/PDB Tool
Foldseek https://github.com/steineggerlab/foldseek
Foldseek-TM https://github.com/steineggerlab/foldseek

Structure search — structural alignment
CE https://github.com/biojava/biojava
Dali http://ekhidna2.biocenter.helsinki.fi/dali
TM-align https://seq2fun.dcmb.med.umich.edu/TM-align

Supplementary Table 18 Sources of baselines.

Methods Family Superfamily Fold
MMseqs2

MMseqs2(Default) 0.157 0.021 0.000
MMseqs2(Best) 0.318 0.050 0.002

Foldseek
Foldseek(Default) 0.883 0.584 0.213
Foldseek(Best) 0.883 0.584 0.214
Foldseek-TM(Best) 0.898 0.664 0.296

TM-align
TM-align(Default) 0.859 0.529 0.158
TM-align(Avg. score) 0.933 0.711 0.326
TM-align(Avg. length) 0.935 0.721 0.346

Supplementary Table 19 Results with different settings for MMseqs2, Foldseek, and TM-align. Different
settings can greatly affect sensitivity. MMseqs2(Default) and Foldseek(Default) are the default settings of the program.
MMseqs2(Best), Foldseek(Best), and Foldseek-TM(Best) are the practiced parameters in the experiments of Foldseek [3].
TM-align(Default) uses the query protein length as the normalized length. TM-align(Avg. score) calculates TM-scores for
both comparison directions and averages them together. TM-align(Avg. length) uses the average length of protein pairs as
the normalized length. We experimented with the settings that yielded the highest sensitivity. The results and setting are
consistent with the conclusions obtained from Foldseek [3] and MT-LSTM [4].
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2 Supplementary Note2

2.1 Sequence alignment3

We define sequence identity the same as BLAST. Sequence identity could reflect the percentage of identical4

residues in the aligned sequence pairs. Sequence identity = (number of matched residues) / (the whole5

length of aligned sequences) [5]. We use the dynamic programming algorithm to perform pairwise sequence6

alignment and obtain the alignment with the highest sequence identity.7

2.2 Reference similarity8

Researchers often want to know what similarity approximately corresponds to the protein pairs sharing9

the same fold. Here, we address this issue by calculating the posterior probability for proteins at certain10

similarities sharing the same or different folds. We will examine the results of the posterior probabilities11

using the fold standards defined by SCOP. Protein pairs sharing the same fold are TPs. The experiments12

are performed with randomly selected 200 proteins from SCOPe40-train as queries and all proteins from13

SCOPe40-train as targets.14

According to the Bayesian rules, for a given similarity, the posterior probabilities of proteins sharing

the same or different folds can be expressed as:

 P (F | S) = P (S|F )P (F )
P (S|F )P (F )+P (S|F̄ )P (F̄ )

P (F̄ | S) = P (S|F̄ )P (F̄ )
P (S|F )P (F )+P (S|F̄ )P (F̄ )

(1)

Here, S stands for the similarity calculated by PLMSearch; F and F̄ represent the events that the protein

pair shares the same and different folds in SCOP, respectively; P (F ) and P (F̄ ) are the prior probabilities.

P (S | F ) and P (S | F̄ ) are the conditional probabilities of similarity when the two proteins share the

same or different folds, respectively. Thus, the conditional probabilities can be calculated by

 P (S | F ) = N(S)∑
N(S)

P (S | F̄ ) = N̄(S)∑
N̄(S)

(2)

where N(S) is the number of protein pairs in the same fold with a certain similarity S, and N̄(S) is the15

number of protein pairs in the different folds with the similarity.16
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The prior probabilities P (F ) and P (F̄ ) can be calculated by

 P (F ) = N(F )
N(F )+N(F̄ )

P (F̄ ) = 1− P (F )
(3)

where N(F ) and N(F̄ ) are, respectively, the numbers of all the same and different folds pairs. Overall,17

P (F ) = 0.0104 and P (F̄ ) = 0.9896 in our counting.18

The posterior probability for two proteins with a certain similarity to be in the same SCOP Fold is19

calculated by integrating the data of Equations 2 and 3 into Equation 1.20

2.3 Remote homology alignment21

2.3.1 PLMAlign pipeline22

The procedure of PLMAlign, akin to the Smith-Waterman [1] and Needleman-Wunsch [2] algorithm,23

primarily encompasses the following three steps:24

• Calculation of the substitution matrix — Use dot product to replace the original fixed substitution25

matrix.26

For a query protein of length m and a target protein of length n, the per-residue embeddings are

Em(m ∗ d) and En(n ∗ d) respectively. The corresponding substitution matrix Smn(m ∗ n) is then

obtained by the cross product of these two matrices.

Smn = Em × ET
n (4)

The essence of the cross product of the two matrices is that for the similarity Smn[i][j] between the

i-th residue of the query protein and the j-th residue of the target protein, Smn[i][j] is calculated by

the dot product of Em[i] and ET
n [j].

Smn[i][j] = Em[i] · ET
n [j] (5)

where 1 <= i <= m and 1 <= j <= n. By replacing the original fixed substitution matrix with the27

similarity (dot product) between vectors, PLMAlign is able to capture the evolutionary information in28
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the context of residues and generates customized substitution matrices for each different query-target29

protein pair, resulting in more accurate alignments.30

• Calculate the scoring matrix based on the substitution matrix and gap penalty — Linear gap penalty

A linear gap penalty has the same scores for opening and extending a gap:

Wk = kW1 (6)

where W1 is the cost of a single gap. The gap penalty is directly proportional to the gap length. When

linear gap penalty is used, the Smith-Waterman algorithm can be simplified to:

Hij = max



Hi−1,j−1 + s (ai, bj)

Hi−1,j −W1

Hi,j−1 −W1

0

(7)

Compared with the traditional SW or NW algorithm using affine gap penalty (such as SW or NW31

implemented by EMBL-EBI (https://www.ebi.ac.uk)), the simplified algorithm uses O(mn) steps, m32

and n are the lengths of the two sequences respectively. When an element is being scored, only the gap33

penalties from the elements that are directly adjacent to this element need to be considered, which34

greatly speeds up PLMAlign (Supplementary Table 14).35

When performing a global comparison, the score can be negative, and the corresponding score matrix

calculation formula is:

Hij = max


Hi−1,j−1 + s (ai, bj)

Hi−1,j −W1

Hi,j−1 −W1

(8)

• Search path based on scoring matrix — Same as traditional SW or NW algorithm.36

When performing a local comparison, PLMAlign begins with the highest score and ends when 0 is37

encountered. When performing a global comparison, PLMAlign begins with the cell at the lower right38

of the matrix and ends at the top left cell.39

The differences between the SW/NW algorithm, pLM-BLAST, and PLMAlign are discussed in further40

detail in Supplementary Table 14.41

https://www.ebi.ac.uk


Springer Nature 2021 LATEX template

22 PLMSearch

2.3.2 Evaluation on remote homology alignment42

Manual structure alignment is an intuitive human assessment, typically emphasizing 3D overlap, as these43

features are easier to visualize [6, 7]. All methods tend to concur when the sequence identity is high. As44

a result, the most valuable gold-standard alignment benchmark includes pairs with low sequence identity45

and varying degrees of structural similarity. Similar to DeepBLAST [8], our benchmarks were conducted46

on the curated Malisam [9] and Malidup [10] protein structural alignment benchmarking datasets, which47

are heavily skewed towards difficult-to-detect, low-sequence-identity remote homology pairs.48

As depicted in Supplementary Fig. 6 and Supplementary Table 15, in both benchmarks, the majority49

of the protein pairs failed to pass the filtering steps of BLAST and HMMER. In other words, BLAST50

and HMMER were unable to detect the vast majority of the alignments. This left the Smith-Waterman51

[1] and Needleman–Wunsch [2] algorithm as the baselines. Owing to the use of dot products to calculate52

similarity instead of the original fixed substitution matrix, PLMAlign outperforms the Smith-Waterman53

and Needleman–Wunsch algorithm. Moreover, compared to pLM-BLAST, PLMAlign performs better on54

F1 and Recall, possibly because PLMAlign takes the gap penalty into account. Through time comparison55

(Supplementary Table 14), we discovered that PLMAlign is faster, particularly in local alignment. This56

may be primarily due to: (1) Dot product is faster than Cosine as no normalization is required. (2)57

PLMAlign uses a linear gap penalty model. When considering the gap penalty for a certain position, only58

the adjacent upper and left positions need to be considered (without considering the entire column and59

row). (3) For local alignment only, PLMAlign directly searches from the maximum value of the entire60

matrix, rather than searching in a traversal manner.61

Additionally, we explored the impact of different language model embeddings (Supplementary Fig.62

8). We compared the per-residue embeddings generated by ESM-1b and ProtT5-XL-UniRef50. We found63

that the COS distance between embeddings generated by ProtT5-XL-UniRef50 has better discrimination,64

both in self-alignment and alignment with another protein. Through experimental verification, we also65

found that ProtT5-XL-UniRef50 can yield better alignment results (Supplementary Table 15).66

2.4 Baseline details67

We first describe the similarity for sorting and versions of different methods in Supplementary Table 17,68

then summarize the sources of different methods in Supplementary Table 18.69
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2.4.1 Sequence search70

• MMseqs2: A sequence search method with huge improvements in speed and sensitivity over other71

sequence search methods. For MMseqs2, different parameter settings will have a huge impact on the72

sensitivity. The default parameters (MMseqs2(Default)) lead to lower sensitivity (Supplementary Table73

19). In order to ensure the fairness of the experiment, we used the parameters practiced in the Foldseek74

paper (–threads 56 -s 7.5 -e 10000 –max-seqs 2000) for experiments (MMseqs2(Best)).75

• Blastp: We first downloaded Blastp from Anaconda: conda install -c bioconda blast. Then, we used76

the default parameters to build target datasets for SCOPe40-test and Swiss-Prot and searched against77

them. Taking the SCOPe40-test as an example, the command to build the dataset: makeblastdb -in78

protein.fasta -title scope40 -dbtype prot -out scope40 -parse seqids. Search command: blastp -query79

protein.fasta -db scope40 -out search result -outfmt “6 qacc sacc bitscore” -num threads 56.80

• HHblits: We first downloaded HHblits from Anaconda: conda install -c conda-forge -c bioconda hhsuite.81

Then, we used the default parameters to build target datasets for SCOPe40-test and searched against82

it. The steps are: 1. Download the UniRef30 database: wget https://gwdu111.gwdg.de/ compbiol/uni-83

clust/2023 02/UniRef30 2023 02 hhsuite.tar.gz. 2. Build the SCOPe40-test dataset and search against84

it with HHblits according to the series of commands in “Building customized databases” from the wiki85

tutorial: https://github.com/soedinglab/hh-suite/wiki.86

• EAT: We completed the following steps according to a series of commands in the repository:87

https://github.com/Rostlab/EAT. 1. Install 2. Use ProtT5-XL-U50 (or ProtT5 for short) to calculate88

the embedding of each residue (L ∗ 1024 for ProtT5). The embeddings for each protein are derived by89

averaging the embeddings for each residue, resulting in a single 1024-d vector for each protein, regard-90

less of its length, and the embeddings are stored as H5 files. 3. Calculate the inter-embedding Euclidean91

distance and sort according to 1 / (Embedding distance + 1) to complete the search.92

• pLM-BLAST: We complete the following steps according to a series of commands in the repository:93

https://github.com/labstructbioinf/pLM-BLAST. 1. Install. 2. Use scripts/makeindex.py to generate94

index files from FASTA files. 3. Use the embeddings.py script to create the database. 4. Use dbtofile.py95

to create an additional file with flattened embeddings. 5. Use pLM-BLAST to search based on the96

generated embeddings.97
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2.4.2 Structure search — structural alphabet98

• 3D-BLAST-SW: We utilized 3D-BLAST (beta102) with BLAST+ (2.2.26) and SSW [11] (version99

ad452e). We first transformed the PDB structures to a 3D-BLAST dataset using 3d-blast -sq write100

and 3d-blast -sq append. For Smith-Waterman, we employed (1) gap open of 8, (2) gap extend of 2,101

and (3) returning alignments (-c). (4) Use 3D-BLAST’s optimized substitution matrix (-a 3DBLAST),102

and (5) Protein alignment mode (-p).103

• CLE-SW: To convert the benchmark structure set to CLE sequences, we used PDB Tool v4.80104

(github.com/realbigws/PDB Tool). Following the conversion, we utilized SSW (commit ad452e) to105

align CLE sequences all-versus-all. We ranked the results based on the alignment score. The following106

parameters were used to execute SSW: (1) protein alignment mode (-p), (2) gap open penalty of 100 (-o107

100), (3) gap extend penalty of 10 (-e 10), (4) CLE’s optimized substitution matrix (-a cle.shen.mat),108

and (5) returning alignment (-c). DeepAlign [12] was used to infer gap open and extend values.109

• Foldseek & Foldseek-TM: The latest protein structure search method, which achieves extremely high110

sensitivity in protein search by directly using structural information for encoding. Similarly, differences111

in parameter settings also affect the sensitivity of Foldseek (Supplementary Table 19). Again, we used112

the parameters practiced in the Foldseek paper (–threads 56 -s 9.5 -e 10 –max-seqs 2000) for experiments113

(Foldseek(Best)). Foldseek-TM then adds an additional parameter “–alignment-type 1”.114

2.4.3 Structure search — structural alignment115

• CE: We utilized BioJava’s [13] (version 5.4.0) implementation of the combinatorial extension (CE)116

alignment algorithm. We modified one of BioJava’s modules in shape configuration to calculate the CE117

value. Our updated CEalign.jar file accepts a set of query files, the path to the target PDB files, and an118

output path as input parameters. This Java program executes an all-versus-all CE computation with119

an unrestricted gap size (maxGapSize -1) to improve alignment results [14].120

• Dali: We installed DaliLite.v5. The input files for the SCOPe40 benchmark set were converted to DAT121

format. The conversion to DAT format resulted in 11,137 valid structures out of 11,211 initial structures122

for the SCOPe benchmark. After preparing the input files, we used Dali’s structural alignment approach123

to calculate protein alignments.124

• TM-align: We first downloaded TM-align from Anaconda: conda install -c bioconda tmalign. We ran125

the benchmark using “-a” parameters. So TM-align reports three TM-scores: (1) normalized by the126
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length of 1st chain (query), (2) normalized by the length of the 2nd chain (target), and (3) normalized127

by the average length of two structures. TM-align(Avg. length) uses the TM-score normalized by the128

average length of two structures and outperforms other settings (Supplementary Table 19). So the129

TM-score used in this paper is generated by TM-align(Avg. length).130
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